Dual Functors for Rigid Categories #
This file defines the left and right dual functors from a rigid monoidal category
to (Cᵒᵖ)ᴹᵒᵖ (the monoidal opposite of the opposite category).
Main definitions #
leftDualFunctor C: For a left rigid category, the functorC ⥤ (Cᵒᵖ)ᴹᵒᵖsendingXtoᘁXandftoᘁf.rightDualFunctor C: For a right rigid category, the functorC ⥤ (Cᵒᵖ)ᴹᵒᵖsendingXtoXᘁandftofᘁ.
Future work #
- Show that in a
RigidCategory, these functors are monoidal equivalences.
def
CategoryTheory.leftDualFunctor
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[LeftRigidCategory C]
:
The left dual functor from C to (Cᵒᵖ)ᴹᵒᵖ.
Equations
Instances For
@[simp]
theorem
CategoryTheory.leftDualFunctor_map
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[LeftRigidCategory C]
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.leftDualFunctor_obj
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[LeftRigidCategory C]
(X : C)
:
def
CategoryTheory.rightDualFunctor
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[RightRigidCategory C]
:
The right dual functor from C to (Cᵒᵖ)ᴹᵒᵖ.
Equations
Instances For
@[simp]
theorem
CategoryTheory.rightDualFunctor_map
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[RightRigidCategory C]
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.rightDualFunctor_obj
(C : Type u)
[Category.{v, u} C]
[MonoidalCategory C]
[RightRigidCategory C]
(X : C)
: