Documentation

Mathlib.CategoryTheory.MorphismProperty.IsInvertedBy

Morphism properties that are inverted by a functor #

In this file, we introduce the predicate P.IsInvertedBy F which expresses that the morphisms satisfying P : MorphismProperty C are mapped to isomorphisms by a functor F : C ⥤ D.

This is used in the localization of categories API (folder CategoryTheory.Localization).

If P : MorphismProperty C and F : C ⥤ D, then P.IsInvertedBy F means that all morphisms in P are mapped by F to isomorphisms in D.

Equations
Instances For
    theorem CategoryTheory.MorphismProperty.IsInvertedBy.of_comp {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [CategoryTheory.Category.{u_4, u_1} C₁] [CategoryTheory.Category.{u_5, u_2} C₂] [CategoryTheory.Category.{u_6, u_3} C₃] (W : CategoryTheory.MorphismProperty C₁) (F : CategoryTheory.Functor C₁ C₂) (hF : W.IsInvertedBy F) (G : CategoryTheory.Functor C₂ C₃) :
    W.IsInvertedBy (F.comp G)
    theorem CategoryTheory.MorphismProperty.IsInvertedBy.prod {C₁ : Type u_1} {C₂ : Type u_2} [CategoryTheory.Category.{u_5, u_1} C₁] [CategoryTheory.Category.{u_6, u_2} C₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} {E₁ : Type u_3} {E₂ : Type u_4} [CategoryTheory.Category.{u_7, u_3} E₁] [CategoryTheory.Category.{u_8, u_4} E₂] {F₁ : CategoryTheory.Functor C₁ E₁} {F₂ : CategoryTheory.Functor C₂ E₂} (h₁ : W₁.IsInvertedBy F₁) (h₂ : W₂.IsInvertedBy F₂) :
    (W₁.prod W₂).IsInvertedBy (F₁.prod F₂)
    theorem CategoryTheory.MorphismProperty.IsInvertedBy.pi {J : Type w} {C : JType u} {D : JType u'} [(j : J) → CategoryTheory.Category.{v, u} (C j)] [(j : J) → CategoryTheory.Category.{v', u'} (D j)] (W : (j : J) → CategoryTheory.MorphismProperty (C j)) (F : (j : J) → CategoryTheory.Functor (C j) (D j)) (hF : ∀ (j : J), (W j).IsInvertedBy (F j)) :

    The full subcategory of C ⥤ D consisting of functors inverting morphisms in W

    Equations
    Instances For
      theorem CategoryTheory.MorphismProperty.FunctorsInverting.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {W : CategoryTheory.MorphismProperty C} {F₁ F₂ : W.FunctorsInverting D} (h : F₁.obj = F₂.obj) :
      F₁ = F₂
      theorem CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {W : CategoryTheory.MorphismProperty C} {F₁ F₂ : W.FunctorsInverting D} {α β : F₁ F₂} (h : α.app = β.app) :
      α = β

      A constructor for W.FunctorsInverting D

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.MorphismProperty.IsInvertedBy.iff_comp {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [CategoryTheory.Category.{u_4, u_1} C₁] [CategoryTheory.Category.{u_5, u_2} C₂] [CategoryTheory.Category.{u_6, u_3} C₃] (W : CategoryTheory.MorphismProperty C₁) (F : CategoryTheory.Functor C₁ C₂) (G : CategoryTheory.Functor C₂ C₃) [G.ReflectsIsomorphisms] :
        W.IsInvertedBy (F.comp G) W.IsInvertedBy F
        theorem CategoryTheory.MorphismProperty.IsInvertedBy.map_iff {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [CategoryTheory.Category.{u_4, u_1} C₁] [CategoryTheory.Category.{u_5, u_2} C₂] [CategoryTheory.Category.{u_6, u_3} C₃] (W : CategoryTheory.MorphismProperty C₁) (F : CategoryTheory.Functor C₁ C₂) (G : CategoryTheory.Functor C₂ C₃) :
        (W.map F).IsInvertedBy G W.IsInvertedBy (F.comp G)