Documentation

Mathlib.CategoryTheory.ObjectProperty.CompleteLattice

ObjectProperty is a complete lattice #

@[simp]
theorem CategoryTheory.ObjectProperty.prop_inf_iff {C : Type u} [Category.{v, u} C] (P Q : ObjectProperty C) (X : C) :
min P Q X P X Q X
@[simp]
theorem CategoryTheory.ObjectProperty.prop_sup_iff {C : Type u} [Category.{v, u} C] (P Q : ObjectProperty C) (X : C) :
max P Q X P X Q X
@[simp]
theorem CategoryTheory.ObjectProperty.prop_iSup_iff {C : Type u} [Category.{v, u} C] {α : Sort u_1} (P : αObjectProperty C) (X : C) :
(⨆ (a : α), P a) X ∃ (a : α), P a X
theorem CategoryTheory.ObjectProperty.isoClosure_iSup {C : Type u} [Category.{v, u} C] {α : Sort u_1} (P : αObjectProperty C) :
(⨆ (a : α), P a).isoClosure = ⨆ (a : α), (P a).isoClosure