ObjectProperty is a complete lattice #
@[simp]
theorem
CategoryTheory.ObjectProperty.prop_inf_iff
{C : Type u}
[Category.{v, u} C]
(P Q : ObjectProperty C)
(X : C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.prop_sup_iff
{C : Type u}
[Category.{v, u} C]
(P Q : ObjectProperty C)
(X : C)
:
theorem
CategoryTheory.ObjectProperty.isoClosure_sup
{C : Type u}
[Category.{v, u} C]
(P Q : ObjectProperty C)
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsMax
{C : Type u}
[Category.{v, u} C]
(P Q : ObjectProperty C)
[P.IsClosedUnderIsomorphisms]
[Q.IsClosedUnderIsomorphisms]
:
(P ⊔ Q).IsClosedUnderIsomorphisms
@[simp]
theorem
CategoryTheory.ObjectProperty.prop_iSup_iff
{C : Type u}
[Category.{v, u} C]
{α : Sort u_1}
(P : α → ObjectProperty C)
(X : C)
:
theorem
CategoryTheory.ObjectProperty.isoClosure_iSup
{C : Type u}
[Category.{v, u} C]
{α : Sort u_1}
(P : α → ObjectProperty C)
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsISup
{C : Type u}
[Category.{v, u} C]
{α : Sort u_1}
(P : α → ObjectProperty C)
[∀ (a : α), (P a).IsClosedUnderIsomorphisms]
:
(⨆ (a : α), P a).IsClosedUnderIsomorphisms