Properties of objects that are stable under finite products #
We introduce typeclasses IsClosedUnderBinaryProducts and
IsClosedUnderFiniteProducts expressing that P : ObjectProperty C
is closed under binary products or finite products.
We introduce a constructor for P.IsClosedUnderFiniteProducts
assuming P.IsClosedUnderBinaryProducts,
P.IsClosedUnderLimitsOfShape (Discrete.{0} PEmpty) and that C
has finite products.
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.IsClosedUnderBinaryProducts
{C : Type u_1}
[Category.{v_1, u_1} C]
(P : ObjectProperty C)
:
The typeclass saying that P : ObjectProperty C is stable under binary products.
Equations
Instances For
theorem
CategoryTheory.ObjectProperty.prop_prod
{C : Type u_1}
[Category.{v_1, u_1} C]
(P : ObjectProperty C)
[P.IsClosedUnderBinaryProducts]
(X Y : C)
[Limits.HasBinaryProduct X Y]
(hX : P X)
(hY : P Y)
:
P (X тип Y)
theorem
CategoryTheory.ObjectProperty.prop_of_isTerminal
{C : Type u_1}
[Category.{v_1, u_1} C]
(P : ObjectProperty C)
[P.IsClosedUnderLimitsOfShape (Discrete PEmpty.{1})]
(X : C)
(hX : Limits.IsTerminal X)
:
P X
class
CategoryTheory.ObjectProperty.IsClosedUnderFiniteProducts
{C : Type u_1}
[Category.{v_1, u_1} C]
(P : ObjectProperty C)
:
The typeclass saying that P : ObjectProperty C is stable under finite products.
Instances
instance
CategoryTheory.ObjectProperty.instIsClosedUnderLimitsOfShapeDiscreteOfIsClosedUnderFiniteProductsOfFinite
{C : Type u_1}
[Category.{v_1, u_1} C]
(P : ObjectProperty C)
[P.IsClosedUnderFiniteProducts]
(J : Type u_2)
[Finite J]
: