The opposite of a property of objects #
The property of objects of Cᵒᵖ
corresponding to P : ObjectProperty C
.
Equations
- P.op X = P (Opposite.unop X)
Instances For
The property of objects of C
corresponding to P : ObjectProperty Cᵒᵖ
.
Equations
- P.unop X = P (Opposite.op X)
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.op_iff
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(X : Cᵒᵖ)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_iff
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
(X : C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.op_unop
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_op
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
theorem
CategoryTheory.ObjectProperty.op_injective
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
(h : P.op = Q.op)
:
theorem
CategoryTheory.ObjectProperty.unop_injective
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty Cᵒᵖ}
(h : P.unop = Q.unop)
:
theorem
CategoryTheory.ObjectProperty.op_injective_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
:
theorem
CategoryTheory.ObjectProperty.unop_injective_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty Cᵒᵖ}
:
theorem
CategoryTheory.ObjectProperty.op_monotone
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
(h : P ≤ Q)
:
theorem
CategoryTheory.ObjectProperty.unop_monotone
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty Cᵒᵖ}
(h : P ≤ Q)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.op_monotone_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_monotone_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty Cᵒᵖ}
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsOppositeOp
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[P.IsClosedUnderIsomorphisms]
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsUnopOfOpposite
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
[P.IsClosedUnderIsomorphisms]
:
theorem
CategoryTheory.ObjectProperty.op_isoClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
theorem
CategoryTheory.ObjectProperty.unop_isoClosure
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty Cᵒᵖ)
:
def
CategoryTheory.ObjectProperty.subtypeOpEquiv
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
:
The bijection Subtype P.op ≃ Subtype P
for P : ObjectProperty C
.
Equations
- P.subtypeOpEquiv = { toFun := fun (x : Subtype P.op) => ⟨Opposite.unop ↑x, ⋯⟩, invFun := fun (x : Subtype P) => ⟨Opposite.op ↑x, ⋯⟩, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.op_ofObj
{C : Type u}
[Category.{v, u} C]
{ι : Type u_1}
(X : ι → C)
:
@[simp]
theorem
CategoryTheory.ObjectProperty.unop_ofObj
{C : Type u}
[Category.{v, u} C]
{ι : Type u_1}
(X : ι → Cᵒᵖ)
:
@[simp]
@[simp]