Orthogonal of a property of objects #
Let P be a property of objects in a category with zero morphisms.
We define P.rightOrthogonal as the property of objects Y such that
any map f : X ⟶ Y vanishes when P X holds. Similarly, we define
P.leftOrthogonal as the property of objects X such that
any map f : X ⟶ Y vanishes when P Y holds.
def
CategoryTheory.ObjectProperty.rightOrthogonal
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
:
In a category with zero morphisms, the right orthogonal of a property of objects P
is the property of objects Y such that any map X ⟶ Y vanishes when P X holds.
Equations
- P.rightOrthogonal Y = ∀ ⦃X : C⦄ (f : X ⟶ Y), P X → f = 0
Instances For
theorem
CategoryTheory.ObjectProperty.rightOrthogonal_iff
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
(Y : C)
:
def
CategoryTheory.ObjectProperty.leftOrthogonal
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
:
In a category with zero morphisms, the left orthogonal of a property of objects P
is the property of objects X such that any map X ⟶ Y vanishes when P Y holds.
Equations
- P.leftOrthogonal X = ∀ ⦃Y : C⦄ (f : X ⟶ Y), P Y → f = 0
Instances For
theorem
CategoryTheory.ObjectProperty.leftOrthogonal_iff
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
(X : C)
:
instance
CategoryTheory.ObjectProperty.instContainsZeroRightOrthogonalOfHasZeroObject
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
:
instance
CategoryTheory.ObjectProperty.instContainsZeroLeftOrthogonalOfHasZeroObject
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
(P : ObjectProperty C)
[Limits.HasZeroObject C]
: