Documentation

Mathlib.CategoryTheory.ObjectProperty.Shift

Properties of objects on categories equipped with shift #

Given a predicate P : ObjectProperty C on objects of a category equipped with a shift by A, we define shifted properties of objects P.shift a for all a : A. We also introduce a typeclass P.IsStableUnderShift A to say that P X implies P (X⟦a⟧) for all a : A.

Given a predicate P : C → Prop on objects of a category equipped with a shift by A, this is the predicate which is satisfied by X if P (X⟦a⟧).

Equations
Instances For
    theorem CategoryTheory.ObjectProperty.prop_shift_iff {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a : A) (X : C) :
    P.shift a X P ((shiftFunctor C a).obj X)
    theorem CategoryTheory.ObjectProperty.shift_shift {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a b c : A) (h : a + b = c) [P.IsClosedUnderIsomorphisms] :
    (P.shift b).shift a = P.shift c

    P : ObjectProperty C is stable under the shift by a : A if P X implies P X⟦a⟧.

    Instances

      P : ObjectProperty C is stable under the shift by A if P X implies P X⟦a⟧ for any a : A.

      Instances