Documentation

Mathlib.CategoryTheory.ObjectProperty.Shift

Properties of objects on categories equipped with shift #

Given a predicate P : ObjectProperty C on objects of a category equipped with a shift by A, we define shifted properties of objects P.shift a for all a : A. We also introduce a typeclass P.IsStableUnderShift A to say that P X implies P (X⟦a⟧) for all a : A.

Given a predicate P : C → Prop on objects of a category equipped with a shift by A, this is the predicate which is satisfied by X if P (X⟦a⟧).

Equations
Instances For
    theorem CategoryTheory.ObjectProperty.prop_shift_iff {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a : A) (X : C) :
    P.shift a X P ((shiftFunctor C a).obj X)
    theorem CategoryTheory.ObjectProperty.shift_shift {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a b c : A) (h : a + b = c) [P.IsClosedUnderIsomorphisms] :
    (P.shift b).shift a = P.shift c

    P : ObjectProperty C is stable under the shift by a : A if P X implies P X⟦a⟧.

    Instances

      P : ObjectProperty C is stable under the shift by A if P X implies P X⟦a⟧ for any a : A.

      Instances

        The closure by shifts and isomorphism of a predicate on objects in a category.

        Equations
        Instances For
          theorem CategoryTheory.ObjectProperty.prop_shiftClosure_iff {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (X : C) :
          P.shiftClosure A X ∃ (Y : C) (a : A) (x : X (shiftFunctor C a).obj Y), P Y
          @[irreducible]
          Equations
          @[irreducible]
          Equations
          • One or more equations did not get rendered due to their size.
          @[instance_reducible]
          noncomputable instance CategoryTheory.ObjectProperty.instCommShiftFullSubcategoryLift {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] {E : Type u_3} [Category.{v_2, u_3} E] [HasShift E A] [P.IsStableUnderShift A] (F : Functor E C) (hF : ∀ (X : E), P (F.obj X)) [F.CommShift A] :
          (P.lift F hF).CommShift A
          Equations