Documentation

Mathlib.CategoryTheory.PathCategory.MorphismProperty

Properties of morphisms in a path category. #

We provide a formulation of induction principles for morphisms in a path category in terms of MorphismProperty. This file is separate from CategoryTheory.PathCategory.Basic in order to reduce transitive imports.

theorem CategoryTheory.Paths.morphismProperty_eq_top (V : Type u₁) [Quiver V] (P : MorphismProperty (Paths V)) (id : ∀ {v : V}, P (CategoryStruct.id (of.obj v))) (comp : ∀ {u v w : V} (p : of.obj u of.obj v) (q : v w), P pP (CategoryStruct.comp p (of.map q))) :
P =

A reformulation of CategoryTheory.Paths.induction in terms of MorphismProperty.

theorem CategoryTheory.Paths.morphismProperty_eq_top' (V : Type u₁) [Quiver V] (P : MorphismProperty (Paths V)) (id : ∀ {v : V}, P (CategoryStruct.id (of.obj v))) (comp : ∀ {u v w : V} (p : u v) (q : of.obj v of.obj w), P qP (CategoryStruct.comp (of.map p) q)) :
P =

A reformulation of CategoryTheory.Paths.induction' in terms of MorphismProperty.