Preadditive structure on algebras over a monad #
If C
is a preadditive category and F
is an additive endofunctor on C
then Algebra F
is
also preadditive. Dually, the category Coalgebra F
is also preadditive.
instance
CategoryTheory.Endofunctor.algebraPreadditive
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
:
Preadditive (Algebra F)
The category of algebras over an additive endofunctor on a preadditive category is preadditive.
Equations
- CategoryTheory.Endofunctor.algebraPreadditive C F = { homGroup := fun (A₁ A₂ : CategoryTheory.Endofunctor.Algebra F) => AddCommGroup.mk ⋯, add_comp := ⋯, comp_add := ⋯ }
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
(α β : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
:
Algebra.Hom.f 0 = 0
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
(α : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
(r : ℤ)
(α : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
(α β : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Algebra F)
(n : ℕ)
(α : A₁ ⟶ A₂)
:
instance
CategoryTheory.Algebra.forget_additive
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
:
(Endofunctor.Algebra.forget F).Additive
instance
CategoryTheory.Endofunctor.coalgebraPreadditive
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
:
Preadditive (Coalgebra F)
Equations
- CategoryTheory.Endofunctor.coalgebraPreadditive C F = { homGroup := fun (A₁ A₂ : CategoryTheory.Endofunctor.Coalgebra F) => AddCommGroup.mk ⋯, add_comp := ⋯, comp_add := ⋯ }
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
(α β : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
(α β : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
(α : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
(r : ℤ)
(α : A₁ ⟶ A₂)
:
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
:
Coalgebra.Hom.f 0 = 0
@[simp]
theorem
CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
(A₁ A₂ : Coalgebra F)
(n : ℕ)
(α : A₁ ⟶ A₂)
:
instance
CategoryTheory.Coalgebra.forget_additive
(C : Type u₁)
[Category.{v₁, u₁} C]
[Preadditive C]
(F : Functor C C)
[F.Additive]
:
(Endofunctor.Coalgebra.forget F).Additive