Documentation

Mathlib.CategoryTheory.Preadditive.EndoFunctor

Preadditive structure on algebras over a monad #

If C is a preadditive category and F is an additive endofunctor on C then Algebra F is also preadditive. Dually, the category Coalgebra F is also preadditive.

The category of algebras over an additive endofunctor on a preadditive category is preadditive.

Equations
@[simp]
theorem CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Algebra F) (α β : A₁ A₂) :
(α + β).f = α.f + β.f
@[simp]
theorem CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Algebra F) (α : A₁ A₂) :
(-α).f = -α.f
@[simp]
theorem CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Algebra F) (r : ) (α : A₁ A₂) :
(r α).f = r α.f
@[simp]
theorem CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Algebra F) (α β : A₁ A₂) :
(α - β).f = α.f - β.f
@[simp]
theorem CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Algebra F) (n : ) (α : A₁ A₂) :
(n α).f = n α.f
Equations
@[simp]
theorem CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Coalgebra F) (α β : A₁ A₂) :
(α - β).f = α.f - β.f
@[simp]
theorem CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Coalgebra F) (α β : A₁ A₂) :
(α + β).f = α.f + β.f
@[simp]
theorem CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Coalgebra F) (α : A₁ A₂) :
(-α).f = -α.f
@[simp]
theorem CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Coalgebra F) (r : ) (α : A₁ A₂) :
(r α).f = r α.f
@[simp]
theorem CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f (C : Type u₁) [Category.{v₁, u₁} C] [Preadditive C] (F : Functor C C) [F.Additive] (A₁ A₂ : Coalgebra F) (n : ) (α : A₁ A₂) :
(n α).f = n α.f