Documentation

Mathlib.CategoryTheory.Preadditive.FunctorCategory

Preadditive structure on functor categories #

If C and D are categories and D is preadditive, then C ⥤ D is also preadditive.

Equations
  • CategoryTheory.instZeroHomFunctorToQuiverToCategoryStructCategory = { zero := { app := fun (X : C) => 0, naturality := } }
Equations
  • CategoryTheory.instAddHomFunctorToQuiverToCategoryStructCategory = { add := fun (α β : F G) => { app := fun (X : C) => α.app X + β.app X, naturality := } }
Equations
  • CategoryTheory.instNegHomFunctorToQuiverToCategoryStructCategory = { neg := fun (α : F G) => { app := fun (X : C) => -α.app X, naturality := } }
Equations

Application of a natural transformation at a fixed object, as group homomorphism

Equations
Instances For
    @[simp]
    theorem CategoryTheory.NatTrans.app_add {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor C D} (X : C) (α : F G) (β : F G) :
    (α + β).app X = α.app X + β.app X
    @[simp]
    theorem CategoryTheory.NatTrans.app_sub {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor C D} (X : C) (α : F G) (β : F G) :
    (α - β).app X = α.app X - β.app X
    @[simp]
    theorem CategoryTheory.NatTrans.app_sum {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_5, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor C D} {ι : Type u_3} (s : Finset ι) (X : C) (α : ι(F G)) :
    (Finset.sum s fun (i : ι) => α i).app X = Finset.sum s fun (i : ι) => (α i).app X