Preadditive structure on functor categories #
If C
and D
are categories and D
is preadditive,
then C ⥤ D
is also preadditive.
instance
CategoryTheory.instZeroHomFunctor
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
:
Equations
- CategoryTheory.instZeroHomFunctor = { zero := { app := fun (x : C) => 0, naturality := ⋯ } }
instance
CategoryTheory.instAddHomFunctor
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
:
instance
CategoryTheory.instNegHomFunctor
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
:
instance
CategoryTheory.functorCategoryPreadditive
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
:
Equations
- CategoryTheory.functorCategoryPreadditive = { homGroup := fun (F G : CategoryTheory.Functor C D) => AddCommGroup.mk ⋯, add_comp := ⋯, comp_add := ⋯ }
def
CategoryTheory.NatTrans.appHom
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
:
Application of a natural transformation at a fixed object, as group homomorphism
Equations
- CategoryTheory.NatTrans.appHom X = { toFun := fun (α : F ⟶ G) => α.app X, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.NatTrans.appHom_apply
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
:
(CategoryTheory.NatTrans.appHom X) α = α.app X
@[simp]
theorem
CategoryTheory.NatTrans.app_zero
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
:
CategoryTheory.NatTrans.app 0 X = 0
@[simp]
theorem
CategoryTheory.NatTrans.app_add
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_sub
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_neg
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_nsmul
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(n : ℕ)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_zsmul
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(n : ℤ)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_units_zsmul
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(n : ℤˣ)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_sum
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_5, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F G : CategoryTheory.Functor C D}
{ι : Type u_3}
(s : Finset ι)
(X : C)
(α : ι → (F ⟶ G))
:
(∑ i ∈ s, α i).app X = ∑ i ∈ s, (α i).app X