Documentation

Mathlib.CategoryTheory.Retract

Retracts #

Defines retracts of objects and morphisms.

An object X is a retract of Y if there are morphisms i : X ⟶ Y and r : Y ⟶ X such that ir = 𝟙 X.

Instances For

    If X is a retract of Y, then F.obj X is a retract of F.obj Y.

    Equations
    • h.map F = { i := F.map h.i, r := F.map h.r, retract := }
    Instances For
      @[simp]
      @[simp]

      a retract determines a split epimorphism.

      Equations
      • h.splitEpi = { section_ := h.i, id := }
      Instances For
        @[simp]
        theorem CategoryTheory.Retract.splitEpi_section_ {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (h : CategoryTheory.Retract X Y) :
        h.splitEpi.section_ = h.i

        a retract determines a split monomorphism.

        Equations
        • h.splitMono = { retraction := h.r, id := }
        Instances For
          @[simp]
          theorem CategoryTheory.Retract.splitMono_retraction {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (h : CategoryTheory.Retract X Y) :
          h.splitMono.retraction = h.r
          @[reducible, inline]
          abbrev CategoryTheory.RetractArrow {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z W : C} (f : X Y) (g : Z W) :
            X -------> Z -------> X
            |          |          |
            f          g          f
            |          |          |
            v          v          v
            Y -------> W -------> Y
          
          

          A morphism f : X ⟶ Y is a retract of g : Z ⟶ W if there are morphisms i : f ⟶ g and r : g ⟶ f in the arrow category such that ir = 𝟙 f.

          Equations
          Instances For

            The top of a retract diagram of morphisms determines a retract of objects.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.RetractArrow.left_i {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z W : C} {f : X Y} {g : Z W} (h : CategoryTheory.RetractArrow f g) :
              h.left.i = h.i.left
              @[simp]
              theorem CategoryTheory.RetractArrow.left_r {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z W : C} {f : X Y} {g : Z W} (h : CategoryTheory.RetractArrow f g) :
              h.left.r = h.r.left

              The bottom of a retract diagram of morphisms determines a retract of objects.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.RetractArrow.right_i {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z W : C} {f : X Y} {g : Z W} (h : CategoryTheory.RetractArrow f g) :
                h.right.i = h.i.right
                @[simp]
                theorem CategoryTheory.RetractArrow.right_r {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z W : C} {f : X Y} {g : Z W} (h : CategoryTheory.RetractArrow f g) :
                h.right.r = h.r.right