Documentation

Mathlib.CategoryTheory.Sites.Coherent.CoherentSheaves

Sheaves for the coherent topology #

This file characterises sheaves for the coherent topology

Main result #

theorem CategoryTheory.isSheaf_coherent {C : Type u_1} [Category.{u_2, u_1} C] [Precoherent C] (P : Functor Cᵒᵖ (Type w)) :
Presieve.IsSheaf (coherentTopology C) P ∀ (B : C) (α : Type) [inst : Finite α] (X : αC) (π : (a : α) → X a B), EffectiveEpiFamily X πPresieve.IsSheafFor P (Presieve.ofArrows X π)

Every Yoneda-presheaf is a sheaf for the coherent topology.

The coherent topology on a precoherent category is subcanonical.