The Finite Pretopology #
In this file we define the finite pretopology on a category, which consists of presieves that contain only finitely many arrows.
Main Definitions #
CategoryTheory.Precoverage.finite
: The finite precoverage on a category.CategoryTheory.Pretopology.finite
: The finite pretopology on a category.
The finite precoverage on a category consists of finite presieves, i.e. a presieve with finitely many maps after uncurrying.
Equations
Instances For
theorem
CategoryTheory.Precoverage.ofArrows_mem_finite
{C : Type u}
[Category.{v, u} C]
{X : C}
{ι : Type u_1}
[Finite ι]
(Y : ι → C)
(f : (i : ι) → Y i ⟶ X)
:
The finite pretopology on a category consists of finite presieves, i.e. a presieve with finitely many maps after uncurrying.
Equations
- CategoryTheory.Pretopology.finite C = { toPrecoverage := CategoryTheory.Precoverage.finite C, has_isos := ⋯, pullbacks := ⋯, transitive := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Pretopology.finite_toPrecoverage
(C : Type u)
[Category.{v, u} C]
[Limits.HasPullbacks C]
:
theorem
CategoryTheory.Pretopology.ofArrows_mem_finite
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{X : C}
{ι : Type u_1}
[Finite ι]
(Y : ι → C)
(f : (i : ι) → Y i ⟶ X)
: