Documentation

Mathlib.CategoryTheory.Sites.Subcanonical

Subcanonical Grothendieck topologies #

This file provides some API for the Yoneda embedding into the category of sheaves for a subcanonical Grothendieck topology.

The equivalence between natural transformations from the yoneda embedding (to the sheaf category) and elements of F.val.obj X.

Equations
Instances For

    See also yonedaEquiv_naturality' for a more general version.

    Variant of yonedaEquiv_naturality with general g. This is technically strictly more general than yonedaEquiv_naturality, but yonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

    theorem CategoryTheory.GrothendieckTopology.map_yonedaEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type v)} (f : J.yoneda.obj X F) (g : Y X) :
    F.val.map g.op (J.yonedaEquiv f) = f.val.app (Opposite.op Y) g

    See also map_yonedaEquiv' for a more general version.

    Variant of map_yonedaEquiv with general g. This is technically strictly more general than map_yonedaEquiv, but map_yonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

    theorem CategoryTheory.GrothendieckTopology.hom_ext_yoneda {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type v)} {f g : P Q} (h : ∀ (X : C) (p : J.yoneda.obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
    f = g

    Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms yoneda.obj X ⟶ P agree.

    The Yoneda lemma for sheaves.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv.


      A version of yonedaEquiv for uliftYoneda.

      Equations
      Instances For
        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply.

        @[simp]
        theorem CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X : C} {F : Sheaf J (Type (max v v'))} (x : F.val.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
        (J.uliftYonedaEquiv.symm x).val.app Y { down := f } = F.val.map f.op x
        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply (since := "2025-11-10")]
        theorem CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X : C} {F : Sheaf J (Type (max v v'))} (x : F.val.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
        (J.uliftYonedaEquiv.symm x).val.app Y { down := f } = F.val.map f.op x

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality.


        See also uliftYonedaEquiv_naturality' for a more general version.

        Variant of uliftYonedaEquiv_naturality with general g. This is technically strictly more general than uliftYonedaEquiv_naturality, but uliftYonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality' (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality'.


        Variant of uliftYonedaEquiv_naturality with general g. This is technically strictly more general than uliftYonedaEquiv_naturality, but uliftYonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right.

        theorem CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type (max v v'))} (f : (uliftYoneda.{v', v, u} J).obj X F) (g : Y X) :
        F.val.map g.op (J.uliftYonedaEquiv f) = f.val.app (Opposite.op Y) { down := g }

        See also map_yonedaEquiv' for a more general version.

        @[deprecated CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv (since := "2025-11-10")]
        theorem CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type (max v v'))} (f : (uliftYoneda.{v', v, u} J).obj X F) (g : Y X) :
        F.val.map g.op (J.uliftYonedaEquiv f) = f.val.app (Opposite.op Y) { down := g }

        Alias of CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv.


        See also map_yonedaEquiv' for a more general version.

        Variant of map_uliftYonedaEquiv with general g. This is technically strictly more general than map_uliftYonedaEquiv, but map_uliftYonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

        @[deprecated CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv' (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv'.


        Variant of map_uliftYonedaEquiv with general g. This is technically strictly more general than map_uliftYonedaEquiv, but map_uliftYonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

        @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map (since := "2025-11-10")]

        Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map.

        theorem CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type (max v v'))} {f g : P Q} (h : ∀ (X : C) (p : (uliftYoneda.{v', v, u} J).obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
        f = g

        Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms uliftYoneda.obj X ⟶ P agree.

        @[deprecated CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda (since := "2025-11-10")]
        theorem CategoryTheory.GrothendieckTopology.hom_ext_yonedaULift {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type (max v v'))} {f g : P Q} (h : ∀ (X : C) (p : (uliftYoneda.{v', v, u} J).obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
        f = g

        Alias of CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda.


        Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms uliftYoneda.obj X ⟶ P agree.

        A variant of the Yoneda lemma for sheaves with a raise in the universe level.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] (X : Cᵒᵖ) (X✝ : Sheaf J (Type (max v' v))) (a✝ : (((evaluation Cᵒᵖ (Type (max v v'))).comp (((Functor.whiskeringRight (Functor Cᵒᵖ (Type (max v v'))) (Type (max v v')) (Type (max (max v v') u))).obj uliftFunctor.{u, max v v'}).comp ((Functor.whiskeringLeft (Sheaf J (Type (max v v'))) (Functor Cᵒᵖ (Type (max v v'))) (Type (max (max v v') u))).obj (sheafToPresheaf J (Type (max v v')))))).obj X).obj X✝) (X✝¹ : Cᵒᵖ) (a✝¹ : (Opposite.unop (((uliftYoneda.{v', v, u} J).comp (sheafToPresheaf J (Type (max v v')))).op.obj X)).obj X✝¹) :
          ((J.uliftYonedaOpCompCoyoneda.inv.app X).app X✝ a✝).val.app X✝¹ a✝¹ = ((CategoryTheory.uliftYonedaOpCompCoyoneda.inv.app X).app X✝.val a✝).app X✝¹ a✝¹