Documentation

Mathlib.CategoryTheory.Sites.Subcanonical

Subcanonical Grothendieck topologies #

This file provides some API for the Yoneda embedding into the category of sheaves for a subcanonical Grothendieck topology.

The equivalence between natural transformations from the yoneda embedding (to the sheaf category) and elements of F.val.obj X.

Equations
Instances For

    See also yonedaEquiv_naturality' for a more general version.

    Variant of yonedaEquiv_naturality with general g. This is technically strictly more general than yonedaEquiv_naturality, but yonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

    theorem CategoryTheory.GrothendieckTopology.map_yonedaEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type v)} (f : J.yoneda.obj X F) (g : Y X) :
    F.val.map g.op (J.yonedaEquiv f) = f.val.app (Opposite.op Y) g

    See also map_yonedaEquiv' for a more general version.

    Variant of map_yonedaEquiv with general g. This is technically strictly more general than map_yonedaEquiv, but map_yonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

    theorem CategoryTheory.GrothendieckTopology.hom_ext_yoneda {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type v)} {f g : P Q} (h : ∀ (X : C) (p : J.yoneda.obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
    f = g

    Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms yoneda.obj X ⟶ P agree.

    @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv (since := "2025-11-10")]

    Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv.


    A version of yonedaEquiv for uliftYoneda.

    Equations
    Instances For
      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply.

      @[simp]
      theorem CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X : C} {F : Sheaf J (Type (max v v'))} (x : F.val.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
      (J.uliftYonedaEquiv.symm x).val.app Y { down := f } = F.val.map f.op x
      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply (since := "2025-11-10")]
      theorem CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X : C} {F : Sheaf J (Type (max v v'))} (x : F.val.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
      (J.uliftYonedaEquiv.symm x).val.app Y { down := f } = F.val.map f.op x

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality.


      See also uliftYonedaEquiv_naturality' for a more general version.

      Variant of uliftYonedaEquiv_naturality with general g. This is technically strictly more general than uliftYonedaEquiv_naturality, but uliftYonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality' (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality'.


      Variant of uliftYonedaEquiv_naturality with general g. This is technically strictly more general than uliftYonedaEquiv_naturality, but uliftYonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right.

      theorem CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type (max v v'))} (f : (uliftYoneda.{v', v, u} J).obj X F) (g : Y X) :
      F.val.map g.op (J.uliftYonedaEquiv f) = f.val.app (Opposite.op Y) { down := g }

      See also map_yonedaEquiv' for a more general version.

      @[deprecated CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv (since := "2025-11-10")]
      theorem CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {X Y : C} {F : Sheaf J (Type (max v v'))} (f : (uliftYoneda.{v', v, u} J).obj X F) (g : Y X) :
      F.val.map g.op (J.uliftYonedaEquiv f) = f.val.app (Opposite.op Y) { down := g }

      Alias of CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv.


      See also map_yonedaEquiv' for a more general version.

      Variant of map_uliftYonedaEquiv with general g. This is technically strictly more general than map_uliftYonedaEquiv, but map_uliftYonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

      @[deprecated CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv' (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv'.


      Variant of map_uliftYonedaEquiv with general g. This is technically strictly more general than map_uliftYonedaEquiv, but map_uliftYonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

      @[deprecated CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map (since := "2025-11-10")]

      Alias of CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map.

      theorem CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type (max v v'))} {f g : P Q} (h : ∀ (X : C) (p : (uliftYoneda.{v', v, u} J).obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
      f = g

      Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms uliftYoneda.obj X ⟶ P agree.

      @[deprecated CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda (since := "2025-11-10")]
      theorem CategoryTheory.GrothendieckTopology.hom_ext_yonedaULift {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) [J.Subcanonical] {P Q : Sheaf J (Type (max v v'))} {f g : P Q} (h : ∀ (X : C) (p : (uliftYoneda.{v', v, u} J).obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
      f = g

      Alias of CategoryTheory.GrothendieckTopology.hom_ext_uliftYoneda.


      Two morphisms of sheaves of types P ⟶ Q coincide if the precompositions with morphisms uliftYoneda.obj X ⟶ P agree.