Documentation

Mathlib.CategoryTheory.Subobject.FactorThru

Factoring through subobjects #

The predicate h : P.Factors f, for P : Subobject Y and f : X ⟶ Y asserts the existence of some P.factorThru f : X ⟶ (P : C) making the obvious diagram commute.

When f : X ⟶ Y and P : MonoOver Y, P.Factors f expresses that there exists a factorisation of f through P. Given h : P.Factors f, you can recover the morphism as P.factorThru f h.

Equations
Instances For
    theorem CategoryTheory.MonoOver.factors_congr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {f g : CategoryTheory.MonoOver X} {Y : C} (h : Y X) (e : f g) :
    f.Factors h g.Factors h
    def CategoryTheory.MonoOver.factorThru {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (P : CategoryTheory.MonoOver Y) (f : X Y) (h : P.Factors f) :
    X P.obj.left

    P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : MonoOver Y, given the evidence h : P.Factors f that such a factorisation exists.

    Equations
    Instances For

      When f : X ⟶ Y and P : Subobject Y, P.Factors f expresses that there exists a factorisation of f through P. Given h : P.Factors f, you can recover the morphism as P.factorThru f h.

      Equations
      Instances For
        theorem CategoryTheory.Subobject.factors_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (P : CategoryTheory.Subobject Y) (f : X Y) :
        P.Factors f (CategoryTheory.Subobject.representative.obj P).Factors f
        theorem CategoryTheory.Subobject.factors_comp_arrow {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {P : CategoryTheory.Subobject Y} (f : X CategoryTheory.Subobject.underlying.obj P) :
        theorem CategoryTheory.Subobject.factors_of_le {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Y Z : C} {P Q : CategoryTheory.Subobject Y} (f : Z Y) (h : P Q) :
        P.Factors fQ.Factors f
        def CategoryTheory.Subobject.factorThru {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (P : CategoryTheory.Subobject Y) (f : X Y) (h : P.Factors f) :
        X CategoryTheory.Subobject.underlying.obj P

        P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : Subobject Y, given the evidence h : P.Factors f that such a factorisation exists.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_arrow {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (P : CategoryTheory.Subobject Y) (f : X Y) (h : P.Factors f) :
          CategoryTheory.CategoryStruct.comp (P.factorThru f h) P.arrow = f
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_self {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} (P : CategoryTheory.Subobject X) (h : P.Factors P.arrow) :
          P.factorThru P.arrow h = CategoryTheory.CategoryStruct.id (CategoryTheory.Subobject.underlying.obj P)
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_comp_arrow {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {P : CategoryTheory.Subobject Y} (f : X CategoryTheory.Subobject.underlying.obj P) (h : P.Factors (CategoryTheory.CategoryStruct.comp f P.arrow)) :
          P.factorThru (CategoryTheory.CategoryStruct.comp f P.arrow) h = f
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_eq_zero {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Limits.HasZeroMorphisms C] {X Y : C} {P : CategoryTheory.Subobject Y} {f : X Y} {h : P.Factors f} :
          P.factorThru f h = 0 f = 0
          theorem CategoryTheory.Subobject.factorThru_right {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y Z : C} {P : CategoryTheory.Subobject Z} (f : X Y) (g : Y Z) (h : P.Factors g) :
          CategoryTheory.CategoryStruct.comp f (P.factorThru g h) = P.factorThru (CategoryTheory.CategoryStruct.comp f g)
          theorem CategoryTheory.Subobject.factorThru_ofLE {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Y Z : C} {P Q : CategoryTheory.Subobject Y} {f : Z Y} (h : P Q) (w : P.Factors f) :
          Q.factorThru f = CategoryTheory.CategoryStruct.comp (P.factorThru f w) (P.ofLE Q h)
          theorem CategoryTheory.Subobject.factors_add {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (wf : P.Factors f) (wg : P.Factors g) :
          P.Factors (f + g)
          theorem CategoryTheory.Subobject.factorThru_add {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (w : P.Factors (f + g)) (wf : P.Factors f) (wg : P.Factors g) :
          P.factorThru (f + g) w = P.factorThru f wf + P.factorThru g wg
          theorem CategoryTheory.Subobject.factors_left_of_factors_add {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (w : P.Factors (f + g)) (wg : P.Factors g) :
          P.Factors f
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_add_sub_factorThru_right {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (w : P.Factors (f + g)) (wg : P.Factors g) :
          P.factorThru (f + g) w - P.factorThru g wg = P.factorThru f
          theorem CategoryTheory.Subobject.factors_right_of_factors_add {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (w : P.Factors (f + g)) (wf : P.Factors f) :
          P.Factors g
          @[simp]
          theorem CategoryTheory.Subobject.factorThru_add_sub_factorThru_left {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Preadditive C] {X Y : C} {P : CategoryTheory.Subobject Y} (f g : X Y) (w : P.Factors (f + g)) (wf : P.Factors f) :
          P.factorThru (f + g) w - P.factorThru f wf = P.factorThru g