Documentation

Mathlib.Combinatorics.Quiver.Cast

Rewriting arrows and paths along vertex equalities #

This files defines Hom.cast and Path.cast (and associated lemmas) in order to allow rewriting arrows and paths along equalities of their endpoints.

Rewriting arrows along equalities of vertices #

def Quiver.Hom.cast {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (e : u v) :
u' v'

Change the endpoints of an arrow using equalities.

Equations
Instances For
    theorem Quiver.Hom.cast_eq_cast {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (e : u v) :
    cast hu hv e = _root_.cast e
    @[simp]
    theorem Quiver.Hom.cast_rfl_rfl {U : Type u_1} [Quiver U] {u v : U} (e : u v) :
    cast e = e
    @[simp]
    theorem Quiver.Hom.cast_cast {U : Type u_1} [Quiver U] {u v u' v' u'' v'' : U} (e : u v) (hu : u = u') (hv : v = v') (hu' : u' = u'') (hv' : v' = v'') :
    cast hu' hv' (cast hu hv e) = cast e
    theorem Quiver.Hom.cast_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (e : u v) :
    HEq (cast hu hv e) e
    theorem Quiver.Hom.cast_eq_iff_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (e : u v) (e' : u' v') :
    cast hu hv e = e' HEq e e'
    theorem Quiver.Hom.eq_cast_iff_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (e : u v) (e' : u' v') :
    e' = cast hu hv e HEq e' e

    Rewriting paths along equalities of vertices #

    def Quiver.Path.cast {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (p : Path u v) :
    Path u' v'

    Change the endpoints of a path using equalities.

    Equations
    Instances For
      theorem Quiver.Path.cast_eq_cast {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (p : Path u v) :
      cast hu hv p = _root_.cast p
      @[simp]
      theorem Quiver.Path.cast_rfl_rfl {U : Type u_1} [Quiver U] {u v : U} (p : Path u v) :
      cast p = p
      @[simp]
      theorem Quiver.Path.cast_cast {U : Type u_1} [Quiver U] {u v u' v' u'' v'' : U} (p : Path u v) (hu : u = u') (hv : v = v') (hu' : u' = u'') (hv' : v' = v'') :
      cast hu' hv' (cast hu hv p) = cast p
      @[simp]
      theorem Quiver.Path.cast_nil {U : Type u_1} [Quiver U] {u u' : U} (hu : u = u') :
      cast hu hu nil = nil
      theorem Quiver.Path.cast_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (p : Path u v) :
      HEq (cast hu hv p) p
      theorem Quiver.Path.cast_eq_iff_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (p : Path u v) (p' : Path u' v') :
      cast hu hv p = p' HEq p p'
      theorem Quiver.Path.eq_cast_iff_heq {U : Type u_1} [Quiver U] {u v u' v' : U} (hu : u = u') (hv : v = v') (p : Path u v) (p' : Path u' v') :
      p' = cast hu hv p HEq p' p
      theorem Quiver.Path.cast_cons {U : Type u_1} [Quiver U] {u v w u' w' : U} (p : Path u v) (e : v w) (hu : u = u') (hw : w = w') :
      cast hu hw (p.cons e) = (cast hu p).cons (Hom.cast hw e)
      theorem Quiver.cast_eq_of_cons_eq_cons {U : Type u_1} [Quiver U] {u v v' w : U} {p : Path u v} {p' : Path u v'} {e : v w} {e' : v' w} (h : p.cons e = p'.cons e') :
      Path.cast p = p'
      theorem Quiver.hom_cast_eq_of_cons_eq_cons {U : Type u_1} [Quiver U] {u v v' w : U} {p : Path u v} {p' : Path u v'} {e : v w} {e' : v' w} (h : p.cons e = p'.cons e') :
      Hom.cast e = e'
      theorem Quiver.eq_nil_of_length_zero {U : Type u_1} [Quiver U] {u v : U} (p : Path u v) (hzero : p.length = 0) :
      Path.cast p = Path.nil