Representation of components by a set of vertices #
Main definition #
SimpleGraph.ConnectedComponent.Represents
says that a set of vertices represents a set of components if it contains exactly one vertex from each component.
def
SimpleGraph.ConnectedComponent.Represents
{V : Type u}
{G : SimpleGraph V}
(s : Set V)
(C : Set G.ConnectedComponent)
:
A set of vertices represents a set of components if it contains exactly one vertex from each component.
Equations
Instances For
theorem
SimpleGraph.ConnectedComponent.Represents.image_out
{V : Type u}
{G : SimpleGraph V}
(C : Set G.ConnectedComponent)
:
Represents (Quot.out '' C) C
theorem
SimpleGraph.ConnectedComponent.Represents.existsUnique_rep
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∈ C)
:
theorem
SimpleGraph.ConnectedComponent.Represents.exists_inter_eq_singleton
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∈ C)
:
theorem
SimpleGraph.ConnectedComponent.Represents.disjoint_supp_of_not_mem
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∉ C)
:
theorem
SimpleGraph.ConnectedComponent.Represents.ncard_inter
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∈ C)
:
theorem
SimpleGraph.ConnectedComponent.Represents.ncard_sdiff_of_mem
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∈ C)
:
theorem
SimpleGraph.ConnectedComponent.Represents.ncard_sdiff_of_not_mem
{V : Type u}
{G : SimpleGraph V}
{C : Set G.ConnectedComponent}
{s : Set V}
{c : G.ConnectedComponent}
(hrep : Represents s C)
(h : c ∉ C)
: