Fixed point #
This module defines a generic fix
operator for defining recursive
computations that are not necessarily well-founded or productive.
An instance is defined for Part
.
Main definition #
def
Part.Fix.approx
{α : Type u_1}
{β : α → Type u_2}
(f : ((a : α) → Part (β a)) → (a : α) → Part (β a))
:
A series of successive, finite approximation of the fixed point of f
, defined by
approx f n = f^[n] ⊥
. The limit of this chain is the fixed point of f
.
Equations
- Part.Fix.approx f 0 = ⊥
- Part.Fix.approx f i.succ = f (Part.Fix.approx f i)
Instances For
def
Part.fixAux
{α : Type u_1}
{β : α → Type u_2}
(f : ((a : α) → Part (β a)) → (a : α) → Part (β a))
{p : ℕ → Prop}
(i : Nat.Upto p)
(g : (j : Nat.Upto p) → i < j → (a : α) → Part (β a))
(a : α)
:
Part (β a)
loop body for finding the fixed point of f
Equations
- Part.fixAux f i g = f fun (x : α) => Part.assert (¬p ↑i) fun (h : ¬p ↑i) => g (i.succ h) ⋯ x
Instances For
def
Part.fix
{α : Type u_1}
{β : α → Type u_2}
(f : ((a : α) → Part (β a)) → (a : α) → Part (β a))
(x : α)
:
Part (β x)
The least fixed point of f
.
If f
is a continuous function (according to complete partial orders),
it satisfies the equations:
Equations
- Part.fix f x = Part.assert (∃ (i : ℕ), (Part.Fix.approx f i x).Dom) fun (h : ∃ (i : ℕ), (Part.Fix.approx f i x).Dom) => ⋯.fix (Part.fixAux f) Nat.Upto.zero x
Instances For
theorem
Part.fix_def
{α : Type u_1}
{β : α → Type u_2}
(f : ((a : α) → Part (β a)) → (a : α) → Part (β a))
{x : α}
(h' : ∃ (i : ℕ), (Fix.approx f i x).Dom)
:
Part.fix f x = Fix.approx f (Nat.find h').succ x
Equations
- Pi.Part.hasFix = { fix := Part.fix }