Computational realization of topological spaces (experimental) #
This file provides infrastructure to compute with topological spaces.
Main declarations #
Ctop
: Realization of a topology basis.Ctop.Realizer
: Realization of a topological space.Ctop
that generates the given topology.LocallyFinite.Realizer
: Realization of the local finiteness of an indexed family of sets.Compact.Realizer
: Realization of the compactness of a set.
theorem
Ctop.coe_mk
{α : Type u_1}
{σ : Type u_3}
(f : σ → Set α)
(T : α → σ)
(h₁ : ∀ (x : α), x ∈ f (T x))
(I : (a b : σ) → (x : α) → x ∈ f a ∩ f b → σ)
(h₂ : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), x ∈ f (I a b x h))
(h₃ : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), f (I a b x h) ⊆ f a ∩ f b)
(a : σ)
:
{ f := f, top := T, top_mem := h₁, inter := I, inter_mem := h₂, inter_sub := h₃ }.f a = f a
@[simp]
theorem
Ctop.ofEquiv_val
{α : Type u_1}
{σ : Type u_3}
{τ : Type u_4}
(E : σ ≃ τ)
(F : Ctop α σ)
(a : τ)
:
(Ctop.ofEquiv E F).f a = F.f (E.symm a)
Every Ctop
is a topological space.
Equations
- F.toTopsp = TopologicalSpace.generateFrom (Set.range F.f)
Instances For
Equations
- instInhabitedRealizer F = { default := F.toRealizer }
theorem
Ctop.Realizer.mem_nhds
{α : Type u_1}
[T : TopologicalSpace α]
(F : Ctop.Realizer α)
{s : Set α}
{a : α}
:
theorem
Ctop.Realizer.isOpen_iff
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
{s : Set α}
:
theorem
Ctop.Realizer.isClosed_iff
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
{s : Set α}
:
theorem
Ctop.Realizer.mem_interior_iff
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
{s : Set α}
{a : α}
:
theorem
Ctop.Realizer.isOpen
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(s : F.σ)
:
IsOpen (F.F.f s)
The topological space realizer made of the open sets.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Ctop.Realizer.ofEquiv
{α : Type u_1}
{τ : Type u_4}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(E : F.σ ≃ τ)
:
Replace the representation type of a Ctop
realizer.
Equations
- F.ofEquiv E = { σ := τ, F := Ctop.ofEquiv E F.F, eq := ⋯ }
Instances For
@[simp]
theorem
Ctop.Realizer.ofEquiv_σ
{α : Type u_1}
{τ : Type u_4}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(E : F.σ ≃ τ)
:
(F.ofEquiv E).σ = τ
@[simp]
theorem
Ctop.Realizer.ofEquiv_F
{α : Type u_1}
{τ : Type u_4}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(E : F.σ ≃ τ)
(s : τ)
:
(F.ofEquiv E).F.f s = F.F.f (E.symm s)
def
Ctop.Realizer.nhds
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(a : α)
:
(nhds a).Realizer
A realizer of the neighborhood of a point.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
Ctop.Realizer.nhds_F
{α : Type u_1}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(a : α)
(s : (F.nhds a).σ)
:
(F.nhds a).F.f s = F.F.f ↑s
theorem
Ctop.Realizer.tendsto_nhds_iff
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
{m : β → α}
{f : Filter β}
(F : f.Realizer)
(R : Ctop.Realizer α)
{a : α}
:
Filter.Tendsto m f (nhds a) ↔ ∀ (t : R.σ), a ∈ R.F.f t → ∃ (s : F.σ), ∀ x ∈ F.F.f s, m x ∈ R.F.f t
structure
LocallyFinite.Realizer
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
(F : Ctop.Realizer α)
(f : β → Set α)
:
Type (max (max u_1 u_2) u_5)
A LocallyFinite.Realizer F f
is a realization that f
is locally finite, namely it is a
choice of open sets from the basis of F
such that they intersect only finitely many of the values
of f
.
- bas : (a : α) → { s : F.σ // a ∈ F.F.f s }
Instances For
theorem
LocallyFinite.Realizer.to_locallyFinite
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
{F : Ctop.Realizer α}
{f : β → Set α}
(R : LocallyFinite.Realizer F f)
:
theorem
locallyFinite_iff_exists_realizer
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
(F : Ctop.Realizer α)
{f : β → Set α}
:
LocallyFinite f ↔ Nonempty (LocallyFinite.Realizer F f)
instance
instNonemptyRealizerOfFinite
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[Finite β]
(F : Ctop.Realizer α)
(f : β → Set α)
:
Equations
- ⋯ = ⋯
def
Compact.Realizer
{α : Type u_1}
[TopologicalSpace α]
(s : Set α)
:
Type (max (max (max u_1 (u_5 + 1)) u_5) u_1)
A Compact.Realizer s
is a realization that s
is compact, namely it is a
choice of finite open covers for each set family covering s
.