Finite sums and products of complex numbers #
@[simp]
theorem
Complex.ofReal_balance
{α : Type u_1}
[Fintype α]
(f : α → ℝ)
(a : α)
:
↑(Fintype.balance f a) = Fintype.balance (ofReal ∘ f) a
@[simp]
theorem
Complex.ofReal_comp_balance
{ι : Type u_2}
[Fintype ι]
(f : ι → ℝ)
:
ofReal ∘ Fintype.balance f = Fintype.balance (ofReal ∘ f)
@[simp]
theorem
Complex.re_balance
{α : Type u_1}
[Fintype α]
(f : α → ℂ)
(a : α)
:
(Fintype.balance f a).re = Fintype.balance (re ∘ f) a
@[simp]
theorem
Complex.re_comp_balance
{ι : Type u_2}
[Fintype ι]
(f : ι → ℂ)
:
re ∘ Fintype.balance f = Fintype.balance (re ∘ f)
@[simp]
theorem
Complex.im_balance
{α : Type u_1}
[Fintype α]
(f : α → ℂ)
(a : α)
:
(Fintype.balance f a).im = Fintype.balance (im ∘ f) a
@[simp]
theorem
Complex.im_comp_balance
{ι : Type u_2}
[Fintype ι]
(f : ι → ℂ)
:
im ∘ Fintype.balance f = Fintype.balance (im ∘ f)