Documentation
Mathlib
.
Data
.
Complex
.
BigOperators
Search
return to top
source
Imports
Init
Mathlib.Algebra.BigOperators.Balance
Mathlib.Data.Complex.Basic
Imported by
Complex
.
ofReal_prod
Complex
.
ofReal_sum
Complex
.
ofReal_expect
Complex
.
ofReal_balance
Complex
.
ofReal_comp_balance
Complex
.
re_sum
Complex
.
re_expect
Complex
.
re_balance
Complex
.
re_comp_balance
Complex
.
im_sum
Complex
.
im_expect
Complex
.
im_balance
Complex
.
im_comp_balance
Finite sums and products of complex numbers
#
source
@[simp]
theorem
Complex
.
ofReal_prod
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℝ
)
:
↑
(∏
i
∈
s
,
f
i
)
=
∏
i
∈
s
,
↑
(
f
i
)
source
@[simp]
theorem
Complex
.
ofReal_sum
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℝ
)
:
↑
(∑
i
∈
s
,
f
i
)
=
∑
i
∈
s
,
↑
(
f
i
)
source
@[simp]
theorem
Complex
.
ofReal_expect
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℝ
)
:
↑
(
s
.
expect
fun (
i
:
α
) =>
f
i
)
=
s
.
expect
fun (
i
:
α
) =>
↑
(
f
i
)
source
@[simp]
theorem
Complex
.
ofReal_balance
{α :
Type
u_1}
[
Fintype
α
]
(f :
α
→
ℝ
)
(a :
α
)
:
↑
(
Fintype.balance
f
a
)
=
Fintype.balance
(
ofReal
∘
f
)
a
source
@[simp]
theorem
Complex
.
ofReal_comp_balance
{ι :
Type
u_2}
[
Fintype
ι
]
(f :
ι
→
ℝ
)
:
ofReal
∘
Fintype.balance
f
=
Fintype.balance
(
ofReal
∘
f
)
source
@[simp]
theorem
Complex
.
re_sum
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℂ
)
:
(∑
i
∈
s
,
f
i
)
.
re
=
∑
i
∈
s
,
(
f
i
)
.
re
source
@[simp]
theorem
Complex
.
re_expect
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℂ
)
:
(
s
.
expect
fun (
i
:
α
) =>
f
i
)
.
re
=
s
.
expect
fun (
i
:
α
) =>
(
f
i
)
.
re
source
@[simp]
theorem
Complex
.
re_balance
{α :
Type
u_1}
[
Fintype
α
]
(f :
α
→
ℂ
)
(a :
α
)
:
(
Fintype.balance
f
a
)
.
re
=
Fintype.balance
(
re
∘
f
)
a
source
@[simp]
theorem
Complex
.
re_comp_balance
{ι :
Type
u_2}
[
Fintype
ι
]
(f :
ι
→
ℂ
)
:
re
∘
Fintype.balance
f
=
Fintype.balance
(
re
∘
f
)
source
@[simp]
theorem
Complex
.
im_sum
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℂ
)
:
(∑
i
∈
s
,
f
i
)
.
im
=
∑
i
∈
s
,
(
f
i
)
.
im
source
@[simp]
theorem
Complex
.
im_expect
{α :
Type
u_1}
(s :
Finset
α
)
(f :
α
→
ℂ
)
:
(
s
.
expect
fun (
i
:
α
) =>
f
i
)
.
im
=
s
.
expect
fun (
i
:
α
) =>
(
f
i
)
.
im
source
@[simp]
theorem
Complex
.
im_balance
{α :
Type
u_1}
[
Fintype
α
]
(f :
α
→
ℂ
)
(a :
α
)
:
(
Fintype.balance
f
a
)
.
im
=
Fintype.balance
(
im
∘
f
)
a
source
@[simp]
theorem
Complex
.
im_comp_balance
{ι :
Type
u_2}
[
Fintype
ι
]
(f :
ι
→
ℂ
)
:
im
∘
Fintype.balance
f
=
Fintype.balance
(
im
∘
f
)