Documentation

Mathlib.Data.DFinsupp.Ext

Extensionality principles for DFinsupp #

Main results #

@[simp]
theorem DFinsupp.add_closure_iUnion_range_single {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] :
theorem DFinsupp.addHom_ext {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {γ : Type w} [AddZeroClass γ] ⦃f g : (Π₀ (i : ι), β i) →+ γ (H : ∀ (i : ι) (y : β i), f (DFinsupp.single i y) = g (DFinsupp.single i y)) :
f = g

If two additive homomorphisms from Π₀ i, β i are equal on each single a b, then they are equal.

theorem DFinsupp.addHom_ext' {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {γ : Type w} [AddZeroClass γ] ⦃f g : (Π₀ (i : ι), β i) →+ γ (H : ∀ (x : ι), f.comp (DFinsupp.singleAddHom β x) = g.comp (DFinsupp.singleAddHom β x)) :
f = g

If two additive homomorphisms from Π₀ i, β i are equal on each single a b, then they are equal.

See note [partially-applied ext lemmas].