Documentation

Mathlib.Data.DFinsupp.FiniteInfinite

Finiteness and infiniteness of the DFinsupp type #

Main results #

instance DFinsupp.fintype {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (π i)] [Fintype ι] [(i : ι) → Fintype (π i)] :
Fintype (Π₀ (i : ι), π i)
Equations
  • DFinsupp.fintype = Fintype.ofEquiv ((i : ι) → π i) DFinsupp.equivFunOnFintype.symm
instance DFinsupp.infinite_of_left {ι : Type u_1} {π : ιType u_2} [∀ (i : ι), Nontrivial (π i)] [(i : ι) → Zero (π i)] [Infinite ι] :
Infinite (Π₀ (i : ι), π i)
theorem DFinsupp.infinite_of_exists_right {ι : Type u_1} {π : ιType u_2} (i : ι) [Infinite (π i)] [(i : ι) → Zero (π i)] :
Infinite (Π₀ (i : ι), π i)

See DFinsupp.infinite_of_right for this in instance form, with the drawback that it needs all π i to be infinite.

instance DFinsupp.infinite_of_right {ι : Type u_1} {π : ιType u_2} [∀ (i : ι), Infinite (π i)] [(i : ι) → Zero (π i)] [Nonempty ι] :
Infinite (Π₀ (i : ι), π i)

See DFinsupp.infinite_of_exists_right for the case that only one π ι is infinite.