Finiteness and infiniteness of the DFinsupp
type #
Main results #
DFinsupp.fintype
: if the domain and codomain are finite, thenDFinsupp
is finiteDFinsupp.infinite_of_left
: if the domain is infinite, thenDFinsupp
is infiniteDFinsupp.infinite_of_exists_right
: if one fiber of the codomain is infinite, thenDFinsupp
is infinite
instance
DFinsupp.fintype
{ι : Type u_1}
{π : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → Zero (π i)]
[Fintype ι]
[(i : ι) → Fintype (π i)]
:
Fintype (Π₀ (i : ι), π i)
Equations
- DFinsupp.fintype = Fintype.ofEquiv ((i : ι) → π i) DFinsupp.equivFunOnFintype.symm
instance
DFinsupp.infinite_of_left
{ι : Type u_1}
{π : ι → Type u_2}
[∀ (i : ι), Nontrivial (π i)]
[(i : ι) → Zero (π i)]
[Infinite ι]
:
Infinite (Π₀ (i : ι), π i)
Equations
- ⋯ = ⋯
theorem
DFinsupp.infinite_of_exists_right
{ι : Type u_1}
{π : ι → Type u_2}
(i : ι)
[Infinite (π i)]
[(i : ι) → Zero (π i)]
:
Infinite (Π₀ (i : ι), π i)
See DFinsupp.infinite_of_right
for this in instance form, with the drawback that
it needs all π i
to be infinite.
instance
DFinsupp.infinite_of_right
{ι : Type u_1}
{π : ι → Type u_2}
[∀ (i : ι), Infinite (π i)]
[(i : ι) → Zero (π i)]
[Nonempty ι]
:
Infinite (Π₀ (i : ι), π i)
See DFinsupp.infinite_of_exists_right
for the case that only one π ι
is infinite.
Equations
- ⋯ = ⋯