Equivalence between Multiset
and ℕ
-valued finitely supported functions #
This defines DFinsupp.toMultiset
the equivalence between Π₀ a : α, ℕ
and Multiset α
, along
with Multiset.toDFinsupp
the reverse equivalence.
instance
DFinsupp.addZeroClass'
{α : Type u_1}
{β : Type u_2}
[AddZeroClass β]
:
AddZeroClass (Π₀ (x : α), β)
Non-dependent special case of DFinsupp.addZeroClass
to help typeclass search.
Equations
A DFinsupp version of Finsupp.toMultiset
.
Equations
- DFinsupp.toMultiset = DFinsupp.sumAddHom fun (a : α) => Multiset.replicateAddMonoidHom a
Instances For
@[simp]
A DFinsupp version of Multiset.toFinsupp
.
Equations
- Multiset.toDFinsupp = { toFun := fun (s : Multiset α) => { toFun := fun (n : α) => Multiset.count n s, support' := Trunc.mk ⟨s, ⋯⟩ }, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
Multiset.toDFinsupp
as an AddEquiv
.
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]