Lemmas about the lattice structure of finite sets #
This file contains many results on the lattice structure of Finset α
, in particular the
interaction between union, intersection, empty set and inserting elements.
Tags #
finite sets, finset
Lattice structure #
union #
theorem
Finset.Nonempty.inl
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : s.Nonempty)
:
(s ∪ t).Nonempty
theorem
Finset.Nonempty.inr
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : t.Nonempty)
:
(s ∪ t).Nonempty
@[simp]
@[simp]
theorem
Finset.induction_on_union
{α : Type u_1}
[DecidableEq α]
(P : Finset α → Finset α → Prop)
(symm : ∀ {a b : Finset α}, P a b → P b a)
(empty_right : ∀ {a : Finset α}, P a ∅)
(singletons : ∀ {a b : α}, P {a} {b})
(union_of : ∀ {a b c : Finset α}, P a c → P b c → P (a ∪ b) c)
(a b : Finset α)
:
P a b
To prove a relation on pairs of Finset X
, it suffices to show that it is
- symmetric,
- it holds when one of the
Finset
s is empty, - it holds for pairs of singletons,
- if it holds for
[a, c]
and for[b, c]
, then it holds for[a ∪ b, c]
.
inter #
@[simp]
theorem
Finset.insert_inter_of_not_mem
{α : Type u_1}
[DecidableEq α]
{s₁ s₂ : Finset α}
{a : α}
(h : a ∉ s₂)
:
@[simp]
theorem
Finset.inter_insert_of_not_mem
{α : Type u_1}
[DecidableEq α]
{s₁ s₂ : Finset α}
{a : α}
(h : a ∉ s₁)
:
@[simp]
theorem
Finset.singleton_inter_of_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(H : a ∈ s)
:
@[simp]
theorem
Finset.singleton_inter_of_not_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(H : a ∉ s)
:
@[simp]
theorem
Finset.inter_singleton_of_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(h : a ∈ s)
:
@[simp]
theorem
Finset.inter_singleton_of_not_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(h : a ∉ s)
:
@[simp]