Image of a Finset α
under a partially defined function #
In this file we define Part.toFinset
and Finset.pimage
. We also prove some trivial lemmas about
these definitions.
Tags #
finite set, image, partial function
def
Finset.pimage
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
(f : α →. β)
[(x : α) → Decidable (f x).Dom]
(s : Finset α)
:
Finset β
Image of s : Finset α
under a partially defined function f : α →. β
.
Equations
- Finset.pimage f s = s.biUnion fun (x : α) => (f x).toFinset
Instances For
@[simp]
theorem
Finset.coe_pimage
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
{f : α →. β}
[(x : α) → Decidable (f x).Dom]
{s : Finset α}
:
theorem
Finset.pimage_eq_image_filter
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
{f : α →. β}
[(x : α) → Decidable (f x).Dom]
{s : Finset α}
:
Rewrite s.pimage f
in terms of Finset.filter
, Finset.attach
, and Finset.image
.
theorem
Finset.pimage_union
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
{f : α →. β}
[(x : α) → Decidable (f x).Dom]
{s t : Finset α}
[DecidableEq α]
:
theorem
Finset.pimage_inter
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
{f : α →. β}
[(x : α) → Decidable (f x).Dom]
{s t : Finset α}
[DecidableEq α]
: