Update a function on a set of values #
This file defines Function.updateFinset
, the operation that updates a function on a
(finite) set of values.
This is a very specific function used for MeasureTheory.marginal
, and possibly not that useful
for other purposes.
def
Function.updateFinset
{ι : Type u_1}
{π : ι → Sort u_2}
[DecidableEq ι]
(x : (i : ι) → π i)
(s : Finset ι)
(y : (i : { x : ι // x ∈ s }) → π ↑i)
(i : ι)
:
π i
updateFinset x s y
is the vector x
with the coordinates in s
changed to the values of y
.
Equations
- Function.updateFinset x s y i = if hi : i ∈ s then y ⟨i, hi⟩ else x i
Instances For
theorem
Function.updateFinset_def
{ι : Type u_1}
{π : ι → Sort u_2}
{x : (i : ι) → π i}
[DecidableEq ι]
{s : Finset ι}
{y : (i : { x : ι // x ∈ s }) → π ↑i}
:
Function.updateFinset x s y = fun (i : ι) => if hi : i ∈ s then y ⟨i, hi⟩ else x i
@[simp]
theorem
Function.updateFinset_empty
{ι : Type u_1}
{π : ι → Sort u_2}
{x : (i : ι) → π i}
[DecidableEq ι]
{y : (i : { x : ι // x ∈ ∅ }) → π ↑i}
:
Function.updateFinset x ∅ y = x
theorem
Function.updateFinset_singleton
{ι : Type u_1}
{π : ι → Sort u_2}
{x : (i : ι) → π i}
[DecidableEq ι]
{i : ι}
{y : (i_1 : { x : ι // x ∈ {i} }) → π ↑i_1}
:
Function.updateFinset x {i} y = Function.update x i (y ⟨i, ⋯⟩)
theorem
Function.update_eq_updateFinset
{ι : Type u_1}
{π : ι → Sort u_2}
{x : (i : ι) → π i}
[DecidableEq ι]
{i : ι}
{y : π i}
:
Function.update x i y = Function.updateFinset x {i} (uniqueElim y)
theorem
Function.updateFinset_updateFinset
{ι : Type u_1}
{π : ι → Type u_2}
{x : (i : ι) → π i}
[DecidableEq ι]
{s t : Finset ι}
(hst : Disjoint s t)
{y : (i : { x : ι // x ∈ s }) → π ↑i}
{z : (i : { x : ι // x ∈ t }) → π ↑i}
:
Function.updateFinset (Function.updateFinset x s y) t z = Function.updateFinset x (s ∪ t) ((Equiv.piFinsetUnion π hst) (y, z))