Documentation

Mathlib.Data.Finsupp.Pointwise

The pointwise product on Finsupp. #

For the convolution product on Finsupp when the domain has a binary operation, see the type synonyms AddMonoidAlgebra (which is in turn used to define Polynomial and MvPolynomial) and MonoidAlgebra.

Declarations about the pointwise product on Finsupps #

def Finsupp.instMul {α : Type u₁} {β : Type u₂} [MulZeroClass β] :
Mul (Finsupp α β)

The product of f g : α →₀ β is the finitely supported function whose value at a is f a * g a.

Equations
Instances For
    theorem Finsupp.coe_mul {α : Type u₁} {β : Type u₂} [MulZeroClass β] (g₁ g₂ : Finsupp α β) :
    theorem Finsupp.mul_apply {α : Type u₁} {β : Type u₂} [MulZeroClass β] {g₁ g₂ : Finsupp α β} {a : α} :
    Eq (DFunLike.coe (HMul.hMul g₁ g₂) a) (HMul.hMul (DFunLike.coe g₁ a) (DFunLike.coe g₂ a))
    theorem Finsupp.single_mul {α : Type u₁} {β : Type u₂} [MulZeroClass β] (a : α) (b₁ b₂ : β) :
    Eq (single a (HMul.hMul b₁ b₂)) (HMul.hMul (single a b₁) (single a b₂))
    theorem Finsupp.support_mul_subset_left {α : Type u₁} {β : Type u₂} [MulZeroClass β] {g₁ g₂ : Finsupp α β} :
    theorem Finsupp.support_mul_subset_right {α : Type u₁} {β : Type u₂} [MulZeroClass β] {g₁ g₂ : Finsupp α β} :
    theorem Finsupp.support_mul {α : Type u₁} {β : Type u₂} [MulZeroClass β] [DecidableEq α] {g₁ g₂ : Finsupp α β} :
    def Finsupp.instMulZeroClass {α : Type u₁} {β : Type u₂} [MulZeroClass β] :
    Equations
    Instances For
      Equations
      Instances For
        Equations
        Instances For
          def Finsupp.instNonUnitalRing {α : Type u₁} {β : Type u₂} [NonUnitalRing β] :
          Equations
          Instances For
            Equations
            Instances For
              def Finsupp.pointwiseScalar {α : Type u₁} {β : Type u₂} [Semiring β] :
              SMul (αβ) (Finsupp α β)
              Equations
              Instances For
                theorem Finsupp.coe_pointwise_smul {α : Type u₁} {β : Type u₂} [Semiring β] (f : αβ) (g : Finsupp α β) :
                def Finsupp.pointwiseModule {α : Type u₁} {β : Type u₂} [Semiring β] :
                Module (αβ) (Finsupp α β)

                The pointwise multiplicative action of functions on finitely supported functions

                Equations
                Instances For