Documentation

Mathlib.Data.Fintype.Powerset

fintype instance for Set α, when α is a fintype #

def Finset.fintype {α : Type u_1} [Fintype α] :
Equations
Instances For
    theorem Fintype.card_finset {α : Type u_1} [Fintype α] :
    Eq (card (Finset α)) (HPow.hPow 2 (card α))
    theorem Finset.filter_subset_univ {α : Type u_1} [Fintype α] [DecidableEq α] (s : Finset α) :
    Eq (filter (fun (t : Finset α) => HasSubset.Subset t s) univ) s.powerset
    theorem Finset.powerset_eq_univ {α : Type u_1} [Fintype α] {s : Finset α} :
    theorem Finset.mem_powersetCard_univ {α : Type u_1} [Fintype α] {s : Finset α} {k : Nat} :
    theorem Finset.univ_filter_card_eq (α : Type u_1) [Fintype α] (k : Nat) :
    Eq (filter (fun (s : Finset α) => Eq s.card k) univ) (powersetCard k univ)
    theorem Fintype.card_finset_len {α : Type u_1} [Fintype α] (k : Nat) :
    Eq (card (Subtype fun (s : Finset α) => Eq s.card k)) ((card α).choose k)
    def Set.fintype {α : Type u_1} [Fintype α] :
    Equations
    Instances For
      theorem Set.instFinite {α : Type u_1} [Finite α] :
      Finite (Set α)
      theorem Fintype.card_set {α : Type u_1} [Fintype α] :
      Eq (card (Set α)) (HPow.hPow 2 (card α))