Documentation

Mathlib.Data.Int.Order.Units

Lemmas about units in , which interact with the order structure. #

theorem Int.isUnit_iff_abs_eq {x : Int} :
Iff (IsUnit x) (Eq (abs x) 1)
theorem Int.isUnit_sq {a : Int} (ha : IsUnit a) :
Eq (HPow.hPow a 2) 1
theorem Int.units_sq (u : Units Int) :
Eq (HPow.hPow u 2) 1
theorem Int.units_pow_two (u : Units Int) :
Eq (HPow.hPow u 2) 1

Alias of Int.units_sq.

theorem Int.units_div_eq_mul (u₁ u₂ : Units Int) :
Eq (HDiv.hDiv u₁ u₂) (HMul.hMul u₁ u₂)
theorem Int.neg_one_pow_ne_zero {n : Nat} :
Ne (HPow.hPow (-1) n) 0
theorem Int.sq_eq_one_of_sq_lt_four {x : Int} (h1 : LT.lt (HPow.hPow x 2) 4) (h2 : Ne x 0) :
Eq (HPow.hPow x 2) 1
theorem Int.sq_eq_one_of_sq_le_three {x : Int} (h1 : LE.le (HPow.hPow x 2) 3) (h2 : Ne x 0) :
Eq (HPow.hPow x 2) 1