Documentation
Mathlib
.
Data
.
Int
.
Order
.
Units
Search
return to top
source
Imports
Init
Mathlib.Algebra.Order.Ring.Abs
Imported by
Int
.
isUnit_iff_abs_eq
Int
.
isUnit_sq
Int
.
units_sq
Int
.
units_pow_two
Int
.
units_mul_self
Int
.
units_inv_eq_self
Int
.
units_div_eq_mul
Int
.
units_coe_mul_self
Int
.
neg_one_pow_ne_zero
Int
.
sq_eq_one_of_sq_lt_four
Int
.
sq_eq_one_of_sq_le_three
Int
.
units_pow_eq_pow_mod_two
Lemmas about units in
ℤ
, which interact with the order structure.
#
source
theorem
Int
.
isUnit_iff_abs_eq
{
x
:
Int
}
:
Iff
(
IsUnit
x
)
(
Eq
(
abs
x
)
1
)
source
theorem
Int
.
isUnit_sq
{
a
:
Int
}
(
ha
:
IsUnit
a
)
:
Eq
(
HPow.hPow
a
2
)
1
source
theorem
Int
.
units_sq
(
u
:
Units
Int
)
:
Eq
(
HPow.hPow
u
2
)
1
source
theorem
Int
.
units_pow_two
(
u
:
Units
Int
)
:
Eq
(
HPow.hPow
u
2
)
1
Alias
of
Int.units_sq
.
source
theorem
Int
.
units_mul_self
(
u
:
Units
Int
)
:
Eq
(
HMul.hMul
u
u
)
1
source
theorem
Int
.
units_inv_eq_self
(
u
:
Units
Int
)
:
Eq
(
Inv.inv
u
)
u
source
theorem
Int
.
units_div_eq_mul
(
u₁
u₂
:
Units
Int
)
:
Eq
(
HDiv.hDiv
u₁
u₂
)
(
HMul.hMul
u₁
u₂
)
source
theorem
Int
.
units_coe_mul_self
(
u
:
Units
Int
)
:
Eq
(
HMul.hMul
u
.
val
u
.
val
)
1
source
theorem
Int
.
neg_one_pow_ne_zero
{
n
:
Nat
}
:
Ne
(
HPow.hPow
(-
1
)
n
)
0
source
theorem
Int
.
sq_eq_one_of_sq_lt_four
{
x
:
Int
}
(
h1
:
LT.lt
(
HPow.hPow
x
2
)
4
)
(
h2
:
Ne
x
0
)
:
Eq
(
HPow.hPow
x
2
)
1
source
theorem
Int
.
sq_eq_one_of_sq_le_three
{
x
:
Int
}
(
h1
:
LE.le
(
HPow.hPow
x
2
)
3
)
(
h2
:
Ne
x
0
)
:
Eq
(
HPow.hPow
x
2
)
1
source
theorem
Int
.
units_pow_eq_pow_mod_two
(
u
:
Units
Int
)
(
n
:
Nat
)
:
Eq
(
HPow.hPow
u
n
)
(
HPow.hPow
u
(
HMod.hMod
n
2
)
)