Absolute values in linear ordered rings. #
@[simp]
abs
as a MonoidWithZeroHom
.
Instances For
theorem
Even.pow_abs
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
(hn : Even n)
(a : α)
:
@[simp]
theorem
abs_eq_iff_mul_self_eq
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
:
theorem
abs_lt_iff_mul_self_lt
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
:
theorem
abs_le_iff_mul_self_le
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
:
theorem
abs_le_one_iff_mul_self_le_one
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
:
theorem
abs_lt_of_sq_lt_sq
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
(h : a ^ 2 < b ^ 2)
(hb : 0 ≤ b)
:
theorem
abs_lt_of_sq_lt_sq'
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
(h : a ^ 2 < b ^ 2)
(hb : 0 ≤ b)
:
theorem
abs_le_of_sq_le_sq
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
(h : a ^ 2 ≤ b ^ 2)
(hb : 0 ≤ b)
:
theorem
le_of_sq_le_sq
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
(h : a ^ 2 ≤ b ^ 2)
(hb : 0 ≤ b)
:
theorem
abs_le_of_sq_le_sq'
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a b : α}
(h : a ^ 2 ≤ b ^ 2)
(hb : 0 ≤ b)
:
theorem
sq_eq_sq_iff_abs_eq_abs
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a b : α)
:
@[simp]
theorem
sq_le_one_iff_abs_le_one
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : α)
:
@[simp]
theorem
sq_lt_one_iff_abs_lt_one
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : α)
:
@[simp]
theorem
one_le_sq_iff_one_le_abs
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : α)
:
@[simp]
theorem
one_lt_sq_iff_one_lt_abs
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : α)
:
theorem
abs_unit_intCast
{α : Type u_1}
[CommRing α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : ℤˣ)
:
theorem
pow_eq_neg_one_iff
{R : Type u_2}
[Ring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
{n : ℕ}
: