Documentation

Mathlib.Algebra.GroupWithZero.Hom

Monoid with zero and group with zero homomorphisms #

This file defines homomorphisms of monoids with zero.

We also define coercion to a function, and usual operations: composition, identity homomorphism, pointwise multiplication and pointwise inversion.

Notations #

Implementation notes #

Implicit {} brackets are often used instead of type class [] brackets. This is done when the instances can be inferred because they are implicit arguments to the type MonoidHom. When they can be inferred from the type it is faster to use this method than to use type class inference.

Tags #

monoid homomorphism

theorem NeZero.of_map {F : Type u_1} {α : Type u_2} {β : Type u_3} [Zero α] [Zero β] [FunLike F α β] [ZeroHomClass F α β] {a : α} (f : F) [neZero : NeZero (f a)] :
theorem NeZero.of_injective {F : Type u_1} {α : Type u_2} {β : Type u_3} [Zero α] [Zero β] [FunLike F α β] [ZeroHomClass F α β] {a : α} {f : F} (hf : Function.Injective f) [NeZero a] :
NeZero (f a)
class MonoidWithZeroHomClass (F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] extends MonoidHomClass F α β, ZeroHomClass F α β :

MonoidWithZeroHomClass F α β states that F is a type of MonoidWithZero-preserving homomorphisms.

You should also extend this typeclass when you extend MonoidWithZeroHom.

Instances
    structure MonoidWithZeroHom (α : Type u_7) (β : Type u_8) [MulZeroOneClass α] [MulZeroOneClass β] extends ZeroHom α β, α →* β :
    Type (max u_7 u_8)

    α →*₀ β is the type of functions α → β that preserve the MonoidWithZero structure.

    MonoidWithZeroHom is also used for group homomorphisms.

    When possible, instead of parametrizing results over (f : α →*₀ β), you should parametrize over (F : Type*) [MonoidWithZeroHomClass F α β] (f : F).

    When you extend this structure, make sure to extend MonoidWithZeroHomClass.

    Instances For

      α →*₀ β denotes the type of zero-preserving monoid homomorphisms from α to β.

      Equations
      Instances For
        def MonoidWithZeroHomClass.toMonoidWithZeroHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] [MonoidWithZeroHomClass F α β] (f : F) :
        α →*₀ β

        Turn an element of a type F satisfying MonoidWithZeroHomClass F α β into an actual MonoidWithZeroHom. This is declared as the default coercion from F to α →*₀ β.

        Equations
        • f = { toFun := (↑f).toFun, map_zero' := , map_one' := , map_mul' := }
        Instances For
          instance MonoidWithZeroHom.funLike {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] :
          FunLike (α →*₀ β) α β
          Equations
          @[simp]
          theorem MonoidWithZeroHom.coe_coe {F : Type u_1} {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] [MonoidWithZeroHomClass F α β] (f : F) :
          f = f

          Bundled morphisms can be down-cast to weaker bundlings

          instance MonoidWithZeroHom.coeToMonoidHom {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] :
          Coe (α →*₀ β) (α →* β)

          MonoidWithZeroHom down-cast to a MonoidHom, forgetting the 0-preserving property.

          Equations
          instance MonoidWithZeroHom.coeToZeroHom {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] :
          Coe (α →*₀ β) (ZeroHom α β)

          MonoidWithZeroHom down-cast to a ZeroHom, forgetting the monoidal property.

          Equations
          @[simp]
          theorem MonoidWithZeroHom.coe_mk {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : ZeroHom α β) (h1 : f.toFun 1 = 1) (hmul : ∀ (x y : α), f.toFun (x * y) = f.toFun x * f.toFun y) :
          { toZeroHom := f, map_one' := h1, map_mul' := hmul } = f
          @[simp]
          theorem MonoidWithZeroHom.toZeroHom_coe {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
          f = f
          theorem MonoidWithZeroHom.toMonoidHom_coe {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
          (↑f).toFun = f
          theorem MonoidWithZeroHom.ext {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] ⦃f g : α →*₀ β (h : ∀ (x : α), f x = g x) :
          f = g
          @[simp]
          theorem MonoidWithZeroHom.mk_coe {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (h1 : (↑f).toFun 1 = 1) (hmul : ∀ (x y : α), (↑f).toFun (x * y) = (↑f).toFun x * (↑f).toFun y) :
          { toZeroHom := f, map_one' := h1, map_mul' := hmul } = f
          def MonoidWithZeroHom.copy {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (f' : αβ) (h : f' = f) :
          α →* β

          Copy of a MonoidHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toFun := ((↑f).copy f' h).toFun, map_one' := , map_mul' := }
          Instances For
            @[simp]
            theorem MonoidWithZeroHom.coe_copy {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (f' : αβ) (h : f' = f) :
            (f.copy f' h) = f'
            theorem MonoidWithZeroHom.copy_eq {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (f' : αβ) (h : f' = f) :
            f.copy f' h = f
            theorem MonoidWithZeroHom.map_one {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
            f 1 = 1
            theorem MonoidWithZeroHom.map_zero {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
            f 0 = 0
            theorem MonoidWithZeroHom.map_mul {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (a b : α) :
            f (a * b) = f a * f b

            The identity map from a MonoidWithZero to itself.

            Equations
            • MonoidWithZeroHom.id α = { toFun := fun (x : α) => x, map_zero' := , map_one' := , map_mul' := }
            Instances For
              @[simp]
              theorem MonoidWithZeroHom.id_apply (α : Type u_7) [MulZeroOneClass α] (x : α) :
              (id α) x = x
              def MonoidWithZeroHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (hnp : β →*₀ γ) (hmn : α →*₀ β) :
              α →*₀ γ

              Composition of MonoidWithZeroHoms as a MonoidWithZeroHom.

              Equations
              • hnp.comp hmn = { toFun := hnp hmn, map_zero' := , map_one' := , map_mul' := }
              Instances For
                @[simp]
                theorem MonoidWithZeroHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (g : β →*₀ γ) (f : α →*₀ β) :
                (g.comp f) = g f
                theorem MonoidWithZeroHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (g : β →*₀ γ) (f : α →*₀ β) (x : α) :
                (g.comp f) x = g (f x)
                theorem MonoidWithZeroHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] [MulZeroOneClass δ] (f : α →*₀ β) (g : β →*₀ γ) (h : γ →*₀ δ) :
                (h.comp g).comp f = h.comp (g.comp f)
                theorem MonoidWithZeroHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g₁ g₂ : β →*₀ γ} {f : α →*₀ β} (hf : Function.Surjective f) :
                g₁.comp f = g₂.comp f g₁ = g₂
                theorem MonoidWithZeroHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g : β →*₀ γ} {f₁ f₂ : α →*₀ β} (hg : Function.Injective g) :
                g.comp f₁ = g.comp f₂ f₁ = f₂
                @[simp]
                theorem MonoidWithZeroHom.comp_id {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
                f.comp (id α) = f
                @[simp]
                theorem MonoidWithZeroHom.id_comp {α : Type u_2} {β : Type u_3} [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) :
                (id β).comp f = f
                instance MonoidWithZeroHom.instMul {α : Type u_2} [MulZeroOneClass α] {β : Type u_7} [CommMonoidWithZero β] :
                Mul (α →*₀ β)

                Given two monoid with zero morphisms f, g to a commutative monoid with zero, f * g is the monoid with zero morphism sending x to f x * g x.

                Equations
                • MonoidWithZeroHom.instMul = { mul := fun (f g : α →*₀ β) => let __src := f * g; { toFun := (↑__src).toFun, map_zero' := , map_one' := , map_mul' := } }
                def powMonoidWithZeroHom {M₀ : Type u_6} [CommMonoidWithZero M₀] {n : } (hn : n 0) :
                M₀ →*₀ M₀

                We define x ↦ x^n (for positive n : ℕ) as a MonoidWithZeroHom

                Equations
                Instances For
                  @[simp]
                  theorem coe_powMonoidWithZeroHom {M₀ : Type u_6} [CommMonoidWithZero M₀] {n : } (hn : n 0) :
                  (powMonoidWithZeroHom hn) = fun (x : M₀) => x ^ n
                  @[simp]
                  theorem powMonoidWithZeroHom_apply {M₀ : Type u_6} [CommMonoidWithZero M₀] {n : } (hn : n 0) (a : M₀) :

                  Equivalences #

                  @[instance 100]
                  instance MulEquivClass.toZeroHomClass {F : Type u_7} {α : Type u_8} {β : Type u_9} [EquivLike F α β] [MulZeroClass α] [MulZeroClass β] [MulEquivClass F α β] :
                  ZeroHomClass F α β
                  @[instance 100]
                  instance MulEquivClass.toMonoidWithZeroHomClass {F : Type u_7} {α : Type u_8} {β : Type u_9} [EquivLike F α β] [MulZeroOneClass α] [MulZeroOneClass β] [MulEquivClass F α β] :