Documentation

Mathlib.Data.List.Duplicate

List duplicates #

Main definitions #

Implementation details #

In this file, x ∈+ l notation is shorthand for List.Duplicate x l.

inductive List.Duplicate {α : Type u_1} (x : α) :
List αProp

Property that an element x : α of l : List α can be found in the list more than once.

Instances For
    theorem List.Mem.duplicate_cons_self {α : Type u_1} {l : List α} {x : α} (h : x l) :
    Duplicate x (x :: l)
    theorem List.Duplicate.duplicate_cons {α : Type u_1} {l : List α} {x : α} (h : Duplicate x l) (y : α) :
    Duplicate x (y :: l)
    theorem List.Duplicate.mem {α : Type u_1} {l : List α} {x : α} (h : Duplicate x l) :
    x l
    theorem List.Duplicate.mem_cons_self {α : Type u_1} {l : List α} {x : α} (h : Duplicate x (x :: l)) :
    x l
    @[simp]
    theorem List.duplicate_cons_self_iff {α : Type u_1} {l : List α} {x : α} :
    Duplicate x (x :: l) x l
    theorem List.Duplicate.ne_nil {α : Type u_1} {l : List α} {x : α} (h : Duplicate x l) :
    l []
    @[simp]
    theorem List.not_duplicate_nil {α : Type u_1} (x : α) :
    theorem List.Duplicate.ne_singleton {α : Type u_1} {l : List α} {x : α} (h : Duplicate x l) (y : α) :
    l [y]
    @[simp]
    theorem List.not_duplicate_singleton {α : Type u_1} (x y : α) :
    theorem List.Duplicate.elim_nil {α : Type u_1} {x : α} (h : Duplicate x []) :
    theorem List.Duplicate.elim_singleton {α : Type u_1} {x y : α} (h : Duplicate x [y]) :
    theorem List.duplicate_cons_iff {α : Type u_1} {l : List α} {x y : α} :
    Duplicate x (y :: l) y = x x l Duplicate x l
    theorem List.Duplicate.of_duplicate_cons {α : Type u_1} {l : List α} {x y : α} (h : Duplicate x (y :: l)) (hx : x y) :
    theorem List.duplicate_cons_iff_of_ne {α : Type u_1} {l : List α} {x y : α} (hne : x y) :
    theorem List.Duplicate.mono_sublist {α : Type u_1} {l : List α} {x : α} {l' : List α} (hx : Duplicate x l) (h : l.Sublist l') :
    theorem List.duplicate_iff_sublist {α : Type u_1} {l : List α} {x : α} :
    Duplicate x l [x, x].Sublist l

    The contrapositive of List.nodup_iff_sublist.

    theorem List.nodup_iff_forall_not_duplicate {α : Type u_1} {l : List α} :
    l.Nodup ∀ (x : α), ¬Duplicate x l
    theorem List.exists_duplicate_iff_not_nodup {α : Type u_1} {l : List α} :
    (∃ (x : α), Duplicate x l) ¬l.Nodup
    theorem List.Duplicate.not_nodup {α : Type u_1} {l : List α} {x : α} (h : Duplicate x l) :
    ¬l.Nodup
    theorem List.duplicate_iff_two_le_count {α : Type u_1} {l : List α} {x : α} [DecidableEq α] :
    instance List.decidableDuplicate {α : Type u_1} [DecidableEq α] (x : α) (l : List α) :
    Equations