Equations
- Multiset.functor = { map := @Multiset.map, mapConst := fun {α β : Type ?u.8} => Multiset.map ∘ Function.const β }
@[simp]
theorem
Multiset.fmap_def
{α' : Type u_1}
{β' : Type u_1}
{s : Multiset α'}
(f : α' → β')
:
f <$> s = Multiset.map f s
Equations
def
Multiset.traverse
{F : Type u → Type u}
[Applicative F]
[CommApplicative F]
{α' : Type u}
{β' : Type u}
(f : α' → F β')
:
Map each element of a Multiset
to an action, evaluate these actions in order,
and collect the results.
Equations
- Multiset.traverse f = Quotient.lift (Functor.map Coe.coe ∘ traverse f) ⋯
Instances For
@[simp]
theorem
Multiset.map_comp_coe
{α : Type u_1}
{β : Type u_1}
(h : α → β)
:
Functor.map h ∘ Coe.coe = Coe.coe ∘ Functor.map h
theorem
Multiset.comp_traverse
{G : Type u_1 → Type u_1}
{H : Type u_1 → Type u_1}
[Applicative G]
[Applicative H]
[CommApplicative G]
[CommApplicative H]
{α : Type u_1}
{β : Type u_1}
{γ : Type u_1}
(g : α → G β)
(h : β → H γ)
(x : Multiset α)
:
Multiset.traverse (Functor.Comp.mk ∘ Functor.map h ∘ g) x = Functor.Comp.mk (Multiset.traverse h <$> Multiset.traverse g x)
theorem
Multiset.map_traverse
{G : Type u_1 → Type u_1}
[Applicative G]
[CommApplicative G]
{α : Type u_1}
{β : Type u_1}
{γ : Type u_1}
(g : α → G β)
(h : β → γ)
(x : Multiset α)
:
Functor.map h <$> Multiset.traverse g x = Multiset.traverse (Functor.map h ∘ g) x
theorem
Multiset.traverse_map
{G : Type u_1 → Type u_1}
[Applicative G]
[CommApplicative G]
{α : Type u_1}
{β : Type u_1}
{γ : Type u_1}
(g : α → β)
(h : β → G γ)
(x : Multiset α)
:
Multiset.traverse h (Multiset.map g x) = Multiset.traverse (h ∘ g) x
theorem
Multiset.naturality
{G : Type u_1 → Type u_1}
{H : Type u_1 → Type u_1}
[Applicative G]
[Applicative H]
[CommApplicative G]
[CommApplicative H]
(eta : ApplicativeTransformation G H)
{α : Type u_1}
{β : Type u_1}
(f : α → G β)
(x : Multiset α)
:
(fun {α : Type u_1} => eta.app α) (Multiset.traverse f x) = Multiset.traverse ((fun {α : Type u_1} => eta.app α) ∘ f) x