Documentation

Mathlib.Data.Multiset.Interval

Finite intervals of multisets #

This file provides the LocallyFiniteOrder instance for Multiset α and calculates the cardinality of its finite intervals.

Implementation notes #

We implement the intervals via the intervals on DFinsupp, rather than via filtering Multiset.Powerset; this is because (Multiset.replicate n x).Powerset has 2^n entries not n+1 entries as it contains duplicates. We do not go via Finsupp as this would be noncomputable, and multisets are typically used computationally.

Equations
  • One or more equations did not get rendered due to their size.
theorem Multiset.Icc_eq {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
Finset.Icc s t = Finset.map equivDFinsupp.symm.toEmbedding (Finset.Icc (toDFinsupp s) (toDFinsupp t))
theorem Multiset.uIcc_eq {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
Finset.uIcc s t = Finset.map equivDFinsupp.symm.toEmbedding (Finset.uIcc (toDFinsupp s) (toDFinsupp t))
theorem Multiset.card_Icc {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
(Finset.Icc s t).card = is.toFinset t.toFinset, (count i t + 1 - count i s)
theorem Multiset.card_Ico {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
(Finset.Ico s t).card = is.toFinset t.toFinset, (count i t + 1 - count i s) - 1
theorem Multiset.card_Ioc {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
(Finset.Ioc s t).card = is.toFinset t.toFinset, (count i t + 1 - count i s) - 1
theorem Multiset.card_Ioo {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
(Finset.Ioo s t).card = is.toFinset t.toFinset, (count i t + 1 - count i s) - 2
theorem Multiset.card_uIcc {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
(Finset.uIcc s t).card = is.toFinset t.toFinset, (((count i t) - (count i s)).natAbs + 1)
theorem Multiset.card_Iic {α : Type u_1} [DecidableEq α] (s : Multiset α) :
(Finset.Iic s).card = is.toFinset, (count i s + 1)