Finite intervals of multisets #
This file provides the LocallyFiniteOrder
instance for Multiset α
and calculates the
cardinality of its finite intervals.
Implementation notes #
We implement the intervals via the intervals on DFinsupp
, rather than via filtering
Multiset.Powerset
; this is because (Multiset.replicate n x).Powerset
has 2^n
entries not n+1
entries as it contains duplicates. We do not go via Finsupp
as this would be noncomputable, and
multisets are typically used computationally.
Equations
- One or more equations did not get rendered due to their size.
theorem
Multiset.Icc_eq
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
Finset.Icc s t = Finset.map Multiset.equivDFinsupp.symm.toEmbedding (Finset.Icc (Multiset.toDFinsupp s) (Multiset.toDFinsupp t))
theorem
Multiset.uIcc_eq
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
Finset.uIcc s t = Finset.map Multiset.equivDFinsupp.symm.toEmbedding (Finset.uIcc (Multiset.toDFinsupp s) (Multiset.toDFinsupp t))
theorem
Multiset.card_Icc
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
(Finset.Icc s t).card = ∏ i ∈ s.toFinset ∪ t.toFinset, (Multiset.count i t + 1 - Multiset.count i s)
theorem
Multiset.card_Ico
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
(Finset.Ico s t).card = ∏ i ∈ s.toFinset ∪ t.toFinset, (Multiset.count i t + 1 - Multiset.count i s) - 1
theorem
Multiset.card_Ioc
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
(Finset.Ioc s t).card = ∏ i ∈ s.toFinset ∪ t.toFinset, (Multiset.count i t + 1 - Multiset.count i s) - 1
theorem
Multiset.card_Ioo
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
(Finset.Ioo s t).card = ∏ i ∈ s.toFinset ∪ t.toFinset, (Multiset.count i t + 1 - Multiset.count i s) - 2
theorem
Multiset.card_uIcc
{α : Type u_1}
[DecidableEq α]
(s t : Multiset α)
:
(Finset.uIcc s t).card = ∏ i ∈ s.toFinset ∪ t.toFinset, ((↑(Multiset.count i t) - ↑(Multiset.count i s)).natAbs + 1)
theorem
Multiset.card_Iic
{α : Type u_1}
[DecidableEq α]
(s : Multiset α)
:
(Finset.Iic s).card = ∏ i ∈ s.toFinset, (Multiset.count i s + 1)