Documentation

Mathlib.Data.NNRat.Lemmas

Field and action structures on the nonnegative rationals #

This file provides additional results about NNRat that cannot live in earlier files due to import cycles.

A MulAction over restricts to a MulAction over ℚ≥0.

Equations
@[simp]
theorem NNRat.coe_indicator {α : Type u_1} (s : Set α) (f : αℚ≥0) (a : α) :
(s.indicator f a) = s.indicator (fun (x : α) => (f x)) a
theorem Rat.toNNRat_div {p q : } (hp : 0 p) :
theorem Rat.toNNRat_div' {p q : } (hq : 0 q) :

Numerator and denominator #

def NNRat.rec {α : ℚ≥0Sort u_1} (h : (m n : ) → α (m / n)) (q : ℚ≥0) :
α q

A recursor for nonnegative rationals in terms of numerators and denominators.

Equations
Instances For
    theorem NNRat.mul_num (q₁ q₂ : ℚ≥0) :
    (q₁ * q₂).num = q₁.num * q₂.num / (q₁.num * q₂.num).gcd (q₁.den * q₂.den)
    theorem NNRat.mul_den (q₁ q₂ : ℚ≥0) :
    (q₁ * q₂).den = q₁.den * q₂.den / (q₁.num * q₂.num).gcd (q₁.den * q₂.den)
    theorem NNRat.den_mul_den_eq_den_mul_gcd (q₁ q₂ : ℚ≥0) :
    q₁.den * q₂.den = (q₁ * q₂).den * (q₁.num * q₂.num).gcd (q₁.den * q₂.den)

    A version of NNRat.mul_den without division.

    theorem NNRat.num_mul_num_eq_num_mul_gcd (q₁ q₂ : ℚ≥0) :
    q₁.num * q₂.num = (q₁ * q₂).num * (q₁.num * q₂.num).gcd (q₁.den * q₂.den)

    A version of NNRat.mul_num without division.