Documentation

Mathlib.Data.Nat.Factorization.PrimePow

Prime powers and factorizations #

This file deals with factorizations of prime powers.

theorem IsPrimePow.minFac_pow_factorization_eq {n : } (hn : IsPrimePow n) :
n.minFac ^ n.factorization n.minFac = n
theorem isPrimePow_of_minFac_pow_factorization_eq {n : } (h : n.minFac ^ n.factorization n.minFac = n) (hn : n 1) :
theorem isPrimePow_iff_minFac_pow_factorization_eq {n : } (hn : n 1) :
IsPrimePow n n.minFac ^ n.factorization n.minFac = n
theorem isPrimePow_iff_factorization_eq_single {n : } :
IsPrimePow n ∃ (p : ) (k : ), 0 < k n.factorization = Finsupp.single p k
theorem isPrimePow_iff_card_primeFactors_eq_one {n : } :
IsPrimePow n n.primeFactors.card = 1
theorem IsPrimePow.exists_ordCompl_eq_one {n : } (h : IsPrimePow n) :
∃ (p : ), Nat.Prime p n / p ^ n.factorization p = 1
@[deprecated IsPrimePow.exists_ordCompl_eq_one (since := "2024-10-24")]
theorem IsPrimePow.exists_ord_compl_eq_one {n : } (h : IsPrimePow n) :
∃ (p : ), Nat.Prime p n / p ^ n.factorization p = 1

Alias of IsPrimePow.exists_ordCompl_eq_one.

theorem exists_ordCompl_eq_one_iff_isPrimePow {n : } (hn : n 1) :
IsPrimePow n ∃ (p : ), Nat.Prime p n / p ^ n.factorization p = 1
@[deprecated exists_ordCompl_eq_one_iff_isPrimePow (since := "2024-10-24")]
theorem exists_ord_compl_eq_one_iff_isPrimePow {n : } (hn : n 1) :
IsPrimePow n ∃ (p : ), Nat.Prime p n / p ^ n.factorization p = 1

Alias of exists_ordCompl_eq_one_iff_isPrimePow.

An equivalent definition for prime powers: n is a prime power iff there is a unique prime dividing it.

theorem isPrimePow_pow_iff {n k : } (hk : k 0) :
theorem Nat.Coprime.isPrimePow_dvd_mul {n a b : } (hab : a.Coprime b) (hn : IsPrimePow n) :
n a * b n a n b
theorem Nat.mul_divisors_filter_prime_pow {a b : } (hab : a.Coprime b) :
Finset.filter IsPrimePow (a * b).divisors = Finset.filter IsPrimePow (a.divisors b.divisors)
theorem IsPrimePow.factorization_minFac_ne_zero {n : } (hn : IsPrimePow n) :
n.factorization n.minFac 0

The canonical equivalence between pairs (p, k) with p a prime and k : ℕ and the set of prime powers given by (p, k) ↦ p^(k+1).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Nat.Primes.prodNatEquiv_apply (p : Primes) (k : ) :
    prodNatEquiv (p, k) = p ^ (k + 1),
    @[simp]
    theorem Nat.Primes.coe_prodNatEquiv_apply (p : Primes) (k : ) :
    (prodNatEquiv (p, k)) = p ^ (k + 1)
    @[simp]
    theorem Nat.Primes.prodNatEquiv_symm_apply {n : } (hn : IsPrimePow n) :
    prodNatEquiv.symm n, hn = (n.minFac, , n.factorization n.minFac - 1)