Prime powers and factorizations #
This file deals with factorizations of prime powers.
theorem
isPrimePow_of_minFac_pow_factorization_eq
{n : ℕ}
(h : n.minFac ^ n.factorization n.minFac = n)
(hn : n ≠ 1)
:
theorem
isPrimePow_iff_minFac_pow_factorization_eq
{n : ℕ}
(hn : n ≠ 1)
:
IsPrimePow n ↔ n.minFac ^ n.factorization n.minFac = n
theorem
isPrimePow_iff_factorization_eq_single
{n : ℕ}
:
IsPrimePow n ↔ ∃ (p : ℕ) (k : ℕ), 0 < k ∧ n.factorization = Finsupp.single p k
@[deprecated IsPrimePow.exists_ordCompl_eq_one]
Alias of IsPrimePow.exists_ordCompl_eq_one
.
@[deprecated exists_ordCompl_eq_one_iff_isPrimePow]
Alias of exists_ordCompl_eq_one_iff_isPrimePow
.
An equivalent definition for prime powers: n
is a prime power iff there is a unique prime
dividing it.
theorem
Nat.mul_divisors_filter_prime_pow
{a b : ℕ}
(hab : a.Coprime b)
:
Finset.filter IsPrimePow (a * b).divisors = Finset.filter IsPrimePow (a.divisors ∪ b.divisors)
theorem
IsPrimePow.factorization_minFac_ne_zero
{n : ℕ}
(hn : IsPrimePow n)
:
n.factorization n.minFac ≠ 0
The canonical equivalence between pairs (p, k)
with p
a prime and k : ℕ
and the set of prime powers given by (p, k) ↦ p^(k+1)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Nat.Primes.prodNatEquiv_apply
(p : Nat.Primes)
(k : ℕ)
:
Nat.Primes.prodNatEquiv (p, k) = ⟨↑p ^ (k + 1), ⋯⟩
@[simp]
theorem
Nat.Primes.coe_prodNatEquiv_apply
(p : Nat.Primes)
(k : ℕ)
:
↑(Nat.Primes.prodNatEquiv (p, k)) = ↑p ^ (k + 1)
@[simp]
theorem
Nat.Primes.prodNatEquiv_symm_apply
{n : ℕ}
(hn : IsPrimePow n)
:
Nat.Primes.prodNatEquiv.symm ⟨n, hn⟩ = (⟨n.minFac, ⋯⟩, n.factorization n.minFac - 1)