Binary representation of integers using inductive types #
Note: Unlike in Coq, where this representation is preferred because of
the reliance on kernel reduction, in Lean this representation is discouraged
in favor of the "Peano" natural numbers Nat
, and the purpose of this
collection of theorems is to show the equivalence of the different approaches.
Equations
bit b n
appends the bit b
to the end of n
, where bit tt x = x1
and bit ff x = x0
.
Equations
- PosNum.bit b = bif b then PosNum.bit1 else PosNum.bit0
Instances For
The successor of a PosNum
.
Equations
- PosNum.one.succ = PosNum.one.bit0
- n.bit1.succ = n.succ.bit0
- n.bit0.succ = n.bit1
Instances For
Addition of two PosNum
s.
Equations
- PosNum.one.add x = x.succ
- x.add PosNum.one = x.succ
- a.bit0.add b.bit0 = (a.add b).bit0
- a.bit1.add b.bit1 = (a.add b).succ.bit0
- a.bit0.add b.bit1 = (a.add b).bit1
- a.bit1.add b.bit0 = (a.add b).bit1
Instances For
The predecessor of a PosNum
as a Num
.
Equations
- PosNum.one.pred' = 0
- n.bit0.pred' = Num.pos (Num.casesOn n.pred' 1 PosNum.bit1)
- n.bit1.pred' = Num.pos n.bit0
Instances For
The predecessor of a PosNum
as a PosNum
. This means that pred 1 = 1
.
Equations
- a.pred = Num.casesOn a.pred' 1 id
Instances For
ofNatSucc n
is the PosNum
corresponding to n + 1
.
Equations
- PosNum.ofNatSucc 0 = 1
- PosNum.ofNatSucc n.succ = (PosNum.ofNatSucc n).succ
Instances For
ofNat n
is the PosNum
corresponding to n
, except for ofNat 0 = 1
.
Equations
- PosNum.ofNat n = PosNum.ofNatSucc n.pred
Instances For
Equations
- PosNum.instOfNatHAddNatOfNat = { ofNat := PosNum.ofNat (n + 1) }
Ordering of PosNum
s.
Equations
- PosNum.one.cmp PosNum.one = Ordering.eq
- x.cmp PosNum.one = Ordering.gt
- PosNum.one.cmp x = Ordering.lt
- a.bit0.cmp b.bit0 = a.cmp b
- a.bit0.cmp b.bit1 = Ordering.casesOn (a.cmp b) Ordering.lt Ordering.lt Ordering.gt
- a.bit1.cmp b.bit0 = Ordering.casesOn (a.cmp b) Ordering.lt Ordering.gt Ordering.gt
- a.bit1.cmp b.bit1 = a.cmp b
Instances For
Equations
- PosNum.instLT = { lt := fun (a b : PosNum) => a.cmp b = Ordering.lt }
Equations
- PosNum.instLE = { le := fun (a b : PosNum) => ¬b < a }
Equations
- instReprPosNum = { reprPrec := fun (n : PosNum) (x : ℕ) => repr ↑n }
Equations
- instReprNum = { reprPrec := fun (n : Num) (x : ℕ) => repr ↑n }
Equations
- Num.instLT = { lt := fun (a b : Num) => a.cmp b = Ordering.lt }
Equations
- Num.ofNat' = Nat.binaryRec 0 fun (b : Bool) (x : ℕ) => bif b then Num.bit1 else Num.bit0
Instances For
Equations
- ZNum.ofInt' (Int.ofNat n) = (Num.ofNat' n).toZNum
- ZNum.ofInt' (Int.negSucc n) = (Num.ofNat' (n + 1)).toZNumNeg
Instances For
Subtraction of two PosNum
s, producing a ZNum
.
Equations
- x.sub' PosNum.one = x.pred'.toZNum
- PosNum.one.sub' x = x.pred'.toZNumNeg
- a.bit0.sub' b.bit0 = (a.sub' b).bit0
- a.bit0.sub' b.bit1 = (a.sub' b).bitm1
- a.bit1.sub' b.bit0 = (a.sub' b).bit1
- a.bit1.sub' b.bit1 = (a.sub' b).bit0
Instances For
Converts a ZNum
to Option PosNum
, where it is some
if the ZNum
was positive and none
otherwise.
Equations
- PosNum.ofZNum' (ZNum.pos p) = some p
- PosNum.ofZNum' x = none
Instances For
Converts a ZNum
to a PosNum
, mapping all out of range values to 1
.
Equations
- PosNum.ofZNum (ZNum.pos p) = p
- PosNum.ofZNum x = 1
Instances For
Converts a ZNum
to an Option Num
, where ofZNum p = 0
if p < 0
.
Equations
- Num.ofZNum (ZNum.pos p) = Num.pos p
- Num.ofZNum x = 0
Instances For
Ordering on ZNum
s.
Equations
- ZNum.zero.cmp ZNum.zero = Ordering.eq
- (ZNum.pos a).cmp (ZNum.pos b) = a.cmp b
- (ZNum.neg a).cmp (ZNum.neg b) = b.cmp a
- (ZNum.pos a).cmp x = Ordering.gt
- (ZNum.neg a).cmp x = Ordering.lt
- x.cmp (ZNum.pos a) = Ordering.lt
- x.cmp (ZNum.neg a) = Ordering.gt
Instances For
Equations
- ZNum.instLT = { lt := fun (a b : ZNum) => a.cmp b = Ordering.lt }
Auxiliary definition for PosNum.divMod
.
Equations
- d.divModAux q r = match Num.ofZNum' (r.sub' (Num.pos d)) with | some r' => (q.bit1, r') | none => (q.bit0, r)
Instances For
Auxiliary definition for Num.gcd
.
Equations
- Num.gcdAux 0 x✝ x = x
- Num.gcdAux n.succ Num.zero x = x
- Num.gcdAux n.succ x✝ x = Num.gcdAux n (x % x✝) x✝
Instances For
Equations
- instReprZNum = { reprPrec := fun (n : ZNum) (x : ℕ) => repr ↑n }