Intervals in a pi type #
This file shows that (dependent) functions to locally finite orders equipped with the pointwise order are locally finite and calculates the cardinality of their intervals.
instance
Pi.instLocallyFiniteOrder
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
:
LocallyFiniteOrder ((i : ι) → α i)
Equations
- Pi.instLocallyFiniteOrder = LocallyFiniteOrder.ofIcc ((i : ι) → α i) (fun (a b : (i : ι) → α i) => Fintype.piFinset fun (i : ι) => Finset.Icc (a i) (b i)) ⋯
theorem
Pi.Icc_eq
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
theorem
Pi.card_Icc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
theorem
Pi.card_Ico
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
theorem
Pi.card_Ioc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
theorem
Pi.card_Ioo
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
instance
Pi.instLocallyFiniteOrderBot
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
:
LocallyFiniteOrderBot ((i : ι) → α i)
Equations
- Pi.instLocallyFiniteOrderBot = LocallyFiniteOrderBot.ofIic ((i : ι) → α i) (fun (b : (i : ι) → α i) => Fintype.piFinset fun (i : ι) => Finset.Iic (b i)) ⋯
theorem
Pi.card_Iic
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
(b : (i : ι) → α i)
:
theorem
Pi.card_Iio
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
(b : (i : ι) → α i)
:
instance
Pi.instLocallyFiniteOrderTop
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
:
LocallyFiniteOrderTop ((i : ι) → α i)
Equations
- Pi.instLocallyFiniteOrderTop = LocallyFiniteOrderTop.ofIci ((i : ι) → α i) (fun (a : (i : ι) → α i) => Fintype.piFinset fun (i : ι) => Finset.Ici (a i)) ⋯
theorem
Pi.card_Ici
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
(a : (i : ι) → α i)
:
theorem
Pi.card_Ioi
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
(a : (i : ι) → α i)
:
theorem
Pi.uIcc_eq
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → Lattice (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
:
theorem
Pi.card_uIcc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → Lattice (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a b : (i : ι) → α i)
: