The quotient of QPF is itself a QPF #
The quotients are here defined using a surjective function and
its right inverse. They are very similar to the abs
and repr
functions found in the definition of MvQPF
def
MvQPF.quotientQPF
{n : ℕ}
{F : TypeVec.{u} n → Type u}
[q : MvQPF F]
{G : TypeVec.{u} n → Type u}
[MvFunctor G]
{FG_abs : {α : TypeVec.{u} n} → F α → G α}
{FG_repr : {α : TypeVec.{u} n} → G α → F α}
(FG_abs_repr : ∀ {α : TypeVec.{u} n} (x : G α), FG_abs (FG_repr x) = x)
(FG_abs_map :
∀ {α β : TypeVec.{u} n} (f : α.Arrow β) (x : F α), FG_abs (MvFunctor.map f x) = MvFunctor.map f (FG_abs x))
:
MvQPF G
If F
is a QPF then G
is a QPF as well. Can be used to
construct MvQPF
instances by transporting them across
surjective functions
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
MvQPF.Quot1
{n : ℕ}
{F : TypeVec.{u} n → Type u}
(R : ⦃α : TypeVec.{u} n⦄ → F α → F α → Prop)
(α : TypeVec.{u} n)
:
Type u
Functorial quotient type
Equations
- MvQPF.Quot1 R α = Quot R
Instances For
instance
MvQPF.Quot1.inhabited
{n : ℕ}
{F : TypeVec.{u} n → Type u}
(R : ⦃α : TypeVec.{u} n⦄ → F α → F α → Prop)
{α : TypeVec.{u} n}
[Inhabited (F α)]
:
Equations
- MvQPF.Quot1.inhabited R = { default := Quot.mk R default }
def
MvQPF.Quot1.map
{n : ℕ}
{F : TypeVec.{u} n → Type u}
(R : ⦃α : TypeVec.{u} n⦄ → F α → F α → Prop)
[MvFunctor F]
(Hfunc : ∀ ⦃α β : TypeVec.{u} n⦄ (a b : F α) (f : α.Arrow β), R a b → R (MvFunctor.map f a) (MvFunctor.map f b))
⦃α β : TypeVec.{u} n⦄
(f : α.Arrow β)
:
Equations
- MvQPF.Quot1.map R Hfunc f = Quot.lift (fun (x : F α) => Quot.mk R (MvFunctor.map f x)) ⋯
Instances For
def
MvQPF.Quot1.mvFunctor
{n : ℕ}
{F : TypeVec.{u} n → Type u}
(R : ⦃α : TypeVec.{u} n⦄ → F α → F α → Prop)
[MvFunctor F]
(Hfunc : ∀ ⦃α β : TypeVec.{u} n⦄ (a b : F α) (f : α.Arrow β), R a b → R (MvFunctor.map f a) (MvFunctor.map f b))
:
mvFunctor
instance for Quot1
with well-behaved R
Equations
- MvQPF.Quot1.mvFunctor R Hfunc = { map := MvQPF.Quot1.map R Hfunc }
Instances For
noncomputable def
MvQPF.relQuot
{n : ℕ}
{F : TypeVec.{u} n → Type u}
(R : ⦃α : TypeVec.{u} n⦄ → F α → F α → Prop)
[q : MvQPF F]
(Hfunc : ∀ ⦃α β : TypeVec.{u} n⦄ (a b : F α) (f : α.Arrow β), R a b → R (MvFunctor.map f a) (MvFunctor.map f b))
:
Quot1
is a QPF
Equations
- MvQPF.relQuot R Hfunc = MvQPF.quotientQPF ⋯ ⋯