Documentation

Mathlib.Data.Set.FiniteExhaustion

Finite Exhaustions #

This file defines a structure called FiniteExhaustion which represents an exhaustion of a countable set by an increasing sequence of finite sets. Given a countable set s, FiniteExhaustion.choice s is a choice of a finite exhaustion.

structure Set.FiniteExhaustion {α : Type u_1} (s : Set α) :
Type u_1

A FiniteExhaustion of a set s is a monotonically increasing sequence of finite sets such that their union is s.

Instances For
    instance Set.FiniteExhaustion.instFiniteElemCoeNat {α : Type u_1} {s : Set α} {K : s.FiniteExhaustion} {n : } :
    Finite (K n)
    @[simp]
    theorem Set.FiniteExhaustion.toFun_eq_coe {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) :
    K.toFun = K
    theorem Set.FiniteExhaustion.finite {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) (n : ) :
    (K n).Finite
    theorem Set.FiniteExhaustion.subset_succ {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) (n : ) :
    K n K (n + 1)
    theorem Set.FiniteExhaustion.mono {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) {m n : } (h : m n) :
    K m K n
    @[simp]
    theorem Set.FiniteExhaustion.iUnion_eq {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) :
    ⋃ (n : ), K n = s
    noncomputable def Set.Countable.finiteExhaustion {α : Type u_1} {s : Set α} (hs : s.Countable) :

    A choice of a FiniteExhaustion for a countable set s.

    Equations
    Instances For
      def Set.FiniteExhaustion.prod {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) {β : Type u_2} {t : Set β} (K' : t.FiniteExhaustion) :

      Given K : FiniteExhaustion s and K' : FiniteExhaustion t, FiniteExhaustion.prod K K' is the finite exhaustion on s ×ˢ t given by the pointwise set product of the exhaustions.

      Equations
      • K.prod K' = { toFun := fun (n : ) => K n ×ˢ K' n, finite' := , subset_succ' := , iUnion_eq' := }
      Instances For
        theorem Set.FiniteExhaustion.prod_apply {α : Type u_1} {s : Set α} (K : s.FiniteExhaustion) {β : Type u_2} {t : Set β} (K' : t.FiniteExhaustion) (n : ) :
        (K.prod K') n = K n ×ˢ K' n