Documentation

Mathlib.FieldTheory.KummerPolynomial

Irreducibility of X ^ p - a #

Main result #

theorem root_X_pow_sub_C_pow {K : Type u} [Field K] (n : ) (a : K) :
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) ^ n = (AdjoinRoot.of (Polynomial.X ^ n - Polynomial.C a)) a
theorem root_X_pow_sub_C_ne_zero {K : Type u} [Field K] {n : } (hn : 1 < n) (a : K) :
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) 0
theorem root_X_pow_sub_C_ne_zero' {K : Type u} [Field K] {n : } {a : K} (hn : 0 < n) (ha : a 0) :
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) 0
theorem ne_zero_of_irreducible_X_pow_sub_C {K : Type u} [Field K] {n : } {a : K} (H : Irreducible (Polynomial.X ^ n - Polynomial.C a)) :
n 0
theorem ne_zero_of_irreducible_X_pow_sub_C' {K : Type u} [Field K] {n : } (hn : n 1) {a : K} (H : Irreducible (Polynomial.X ^ n - Polynomial.C a)) :
a 0
theorem root_X_pow_sub_C_eq_zero_iff {K : Type u} [Field K] {n : } {a : K} (H : Irreducible (Polynomial.X ^ n - Polynomial.C a)) :
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) = 0 a = 0
theorem root_X_pow_sub_C_ne_zero_iff {K : Type u} [Field K] {n : } {a : K} (H : Irreducible (Polynomial.X ^ n - Polynomial.C a)) :
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) 0 a 0
theorem pow_ne_of_irreducible_X_pow_sub_C {K : Type u} [Field K] {n : } {a : K} (H : Irreducible (Polynomial.X ^ n - Polynomial.C a)) {m : } (hm : m n) (hm' : m 1) (b : K) :
b ^ m a
theorem X_pow_sub_C_irreducible_of_prime {K : Type u} [Field K] {p : } (hp : Nat.Prime p) {a : K} (ha : ∀ (b : K), b ^ p a) :
Irreducible (Polynomial.X ^ p - Polynomial.C a)

Let p be a prime number. Let K be a field. Let t ∈ K be an element which does not have a pth root in K. Then the polynomial x ^ p - t is irreducible over K.

Stacks Tag 09HF (We proved the result without the condition that K is char p in 09HF.)

theorem X_pow_sub_C_irreducible_iff_of_prime {K : Type u} [Field K] {p : } (hp : Nat.Prime p) {a : K} :
Irreducible (Polynomial.X ^ p - Polynomial.C a) ∀ (b : K), b ^ p a