Irreducibility of X ^ p - a #
Main result #
X_pow_sub_C_irreducible_iff_of_prime
: Forp
prime,X ^ p - C a
is irreducible iffa
is not ap
-power. This is not true for compositen
. For example,x^4+4=(x^2-2x+2)(x^2+2x+2)
but-4
is not a 4th power.
theorem
root_X_pow_sub_C_pow
{K : Type u}
[Field K]
(n : Nat)
(a : K)
:
Eq (HPow.hPow (AdjoinRoot.root (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) n)
(DFunLike.coe (AdjoinRoot.of (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) a)
theorem
root_X_pow_sub_C_ne_zero
{K : Type u}
[Field K]
{n : Nat}
(hn : LT.lt 1 n)
(a : K)
:
Ne (AdjoinRoot.root (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) 0
theorem
root_X_pow_sub_C_ne_zero'
{K : Type u}
[Field K]
{n : Nat}
{a : K}
(hn : LT.lt 0 n)
(ha : Ne a 0)
:
Ne (AdjoinRoot.root (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) 0
theorem
ne_zero_of_irreducible_X_pow_sub_C
{K : Type u}
[Field K]
{n : Nat}
{a : K}
(H : Irreducible (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a)))
:
Ne n 0
theorem
ne_zero_of_irreducible_X_pow_sub_C'
{K : Type u}
[Field K]
{n : Nat}
(hn : Ne n 1)
{a : K}
(H : Irreducible (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a)))
:
Ne a 0
theorem
root_X_pow_sub_C_eq_zero_iff
{K : Type u}
[Field K]
{n : Nat}
{a : K}
(H : Irreducible (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a)))
:
Iff (Eq (AdjoinRoot.root (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) 0) (Eq a 0)
theorem
root_X_pow_sub_C_ne_zero_iff
{K : Type u}
[Field K]
{n : Nat}
{a : K}
(H : Irreducible (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a)))
:
Iff (Ne (AdjoinRoot.root (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a))) 0) (Ne a 0)
theorem
pow_ne_of_irreducible_X_pow_sub_C
{K : Type u}
[Field K]
{n : Nat}
{a : K}
(H : Irreducible (HSub.hSub (HPow.hPow Polynomial.X n) (DFunLike.coe Polynomial.C a)))
{m : Nat}
(hm : Dvd.dvd m n)
(hm' : Ne m 1)
(b : K)
:
theorem
X_pow_sub_C_irreducible_of_prime
{K : Type u}
[Field K]
{p : Nat}
(hp : Nat.Prime p)
{a : K}
(ha : ∀ (b : K), Ne (HPow.hPow b p) a)
:
Let p
be a prime number. Let K
be a field.
Let t ∈ K
be an element which does not have a p
th root in K
.
Then the polynomial x ^ p - t
is irreducible over K
.
Stacks Tag 09HF (We proved the result without the condition that K
is char p in 09HF.)
theorem
X_pow_sub_C_irreducible_iff_of_prime
{K : Type u}
[Field K]
{p : Nat}
(hp : Nat.Prime p)
{a : K}
:
Iff (Irreducible (HSub.hSub (HPow.hPow Polynomial.X p) (DFunLike.coe Polynomial.C a))) (∀ (b : K), Ne (HPow.hPow b p) a)