Irreducibility of X ^ p - a #
Main result #
X_pow_sub_C_irreducible_iff_of_prime
: Forp
prime,X ^ p - C a
is irreducible iffa
is not ap
-power. This is not true for compositen
. For example,x^4+4=(x^2-2x+2)(x^2+2x+2)
but-4
is not a 4th power.
theorem
root_X_pow_sub_C_pow
{K : Type u}
[Field K]
(n : ℕ)
(a : K)
:
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) ^ n = (AdjoinRoot.of (Polynomial.X ^ n - Polynomial.C a)) a
theorem
root_X_pow_sub_C_ne_zero
{K : Type u}
[Field K]
{n : ℕ}
(hn : 1 < n)
(a : K)
:
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) ≠ 0
theorem
root_X_pow_sub_C_ne_zero'
{K : Type u}
[Field K]
{n : ℕ}
{a : K}
(hn : 0 < n)
(ha : a ≠ 0)
:
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) ≠ 0
theorem
ne_zero_of_irreducible_X_pow_sub_C
{K : Type u}
[Field K]
{n : ℕ}
{a : K}
(H : Irreducible (Polynomial.X ^ n - Polynomial.C a))
:
n ≠ 0
theorem
ne_zero_of_irreducible_X_pow_sub_C'
{K : Type u}
[Field K]
{n : ℕ}
(hn : n ≠ 1)
{a : K}
(H : Irreducible (Polynomial.X ^ n - Polynomial.C a))
:
a ≠ 0
theorem
root_X_pow_sub_C_eq_zero_iff
{K : Type u}
[Field K]
{n : ℕ}
{a : K}
(H : Irreducible (Polynomial.X ^ n - Polynomial.C a))
:
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) = 0 ↔ a = 0
theorem
root_X_pow_sub_C_ne_zero_iff
{K : Type u}
[Field K]
{n : ℕ}
{a : K}
(H : Irreducible (Polynomial.X ^ n - Polynomial.C a))
:
AdjoinRoot.root (Polynomial.X ^ n - Polynomial.C a) ≠ 0 ↔ a ≠ 0
theorem
pow_ne_of_irreducible_X_pow_sub_C
{K : Type u}
[Field K]
{n : ℕ}
{a : K}
(H : Irreducible (Polynomial.X ^ n - Polynomial.C a))
{m : ℕ}
(hm : m ∣ n)
(hm' : m ≠ 1)
(b : K)
:
theorem
X_pow_sub_C_irreducible_of_prime
{K : Type u}
[Field K]
{p : ℕ}
(hp : Nat.Prime p)
{a : K}
(ha : ∀ (b : K), b ^ p ≠ a)
:
Irreducible (Polynomial.X ^ p - Polynomial.C a)
Let p
be a prime number. Let K
be a field.
Let t ∈ K
be an element which does not have a p
th root in K
.
Then the polynomial x ^ p - t
is irreducible over K
.
Stacks Tag 09HF (We proved the result without the condition that K
is char p in 09HF.)
theorem
X_pow_sub_C_irreducible_iff_of_prime
{K : Type u}
[Field K]
{p : ℕ}
(hp : Nat.Prime p)
{a : K}
:
Irreducible (Polynomial.X ^ p - Polynomial.C a) ↔ ∀ (b : K), b ^ p ≠ a