Angle bisectors. #
This file proves lemmas relating to bisecting angles.
theorem
EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{p p' : P}
{s₁ s₂ : AffineSubspace ℝ P}
[s₁.direction.HasOrthogonalProjection]
[s₂.direction.HasOrthogonalProjection]
(hp' : p' ∈ s₁ ⊓ s₂)
:
dist p ↑((orthogonalProjection s₁) p) = dist p ↑((orthogonalProjection s₂) p) ↔ angle p p' ↑((orthogonalProjection s₁) p) = angle p p' ↑((orthogonalProjection s₂) p)
A point p
is equidistant to two affine subspaces if and only if the angles at a point p'
in their intersection between p
and its orthogonal projections onto the subspaces are equal.