Documentation

Mathlib.Geometry.Euclidean.Angle.Bisector

Angle bisectors. #

This file proves lemmas relating to bisecting angles.

A point p is equidistant to two affine subspaces if and only if the angles at a point p' in their intersection between p and its orthogonal projections onto the subspaces are equal.

theorem EuclideanGeometry.dist_orthogonalProjection_eq_of_oangle_eq {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] [Fact (Module.finrank V = 2)] [Module.Oriented V (Fin 2)] {p p' : P} {s₁ s₂ : AffineSubspace P} (hp' : p' s₁s₂) :
((orthogonalProjection s₁) p) p'((orthogonalProjection s₂) p) p'oangle (↑((orthogonalProjection s₁) p)) p' p = oangle p p' ((orthogonalProjection s₂) p)dist p ((orthogonalProjection s₁) p) = dist p ((orthogonalProjection s₂) p)

A point p is equidistant to two affine subspaces (typically lines, for this version of the lemma) if the oriented angles at a point p' in their intersection between p and its orthogonal projections onto the subspaces are equal.

theorem EuclideanGeometry.oangle_eq_of_dist_orthogonalProjection_eq {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] [Fact (Module.finrank V = 2)] [Module.Oriented V (Fin 2)] {p p' : P} {s₁ s₂ : AffineSubspace P} (hp' : p' s₁s₂) :
((orthogonalProjection s₁) p) ((orthogonalProjection s₂) p)dist p ((orthogonalProjection s₁) p) = dist p ((orthogonalProjection s₂) p)oangle (↑((orthogonalProjection s₁) p)) p' p = oangle p p' ((orthogonalProjection s₂) p)

The oriented angles at a point p' in their intersection between p and its orthogonal projections onto two affine subspaces (typically lines, for this version of the lemma) are equal if p is equidistant to the two subspaces.

theorem EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] [Fact (Module.finrank V = 2)] [Module.Oriented V (Fin 2)] {p p' : P} {s₁ s₂ : AffineSubspace P} (hp' : p' s₁s₂) :
((orthogonalProjection s₁) p) ((orthogonalProjection s₂) p)((orthogonalProjection s₁) p) p'((orthogonalProjection s₂) p) p' → (dist p ((orthogonalProjection s₁) p) = dist p ((orthogonalProjection s₂) p) oangle (↑((orthogonalProjection s₁) p)) p' p = oangle p p' ((orthogonalProjection s₂) p))

A point p is equidistant to two affine subspaces (typically lines, for this version of the lemma) if and only if the oriented angles at a point p' in their intersection between p and its orthogonal projections onto the subspaces are equal.