Documentation

Mathlib.Geometry.Euclidean.Angle.Oriented.Projection

Oriented angles and orthogonal projection. #

This file proves lemmas relating to oriented angles involving orthogonal projections.

theorem EuclideanGeometry.oangle_self_orthogonalProjection {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank V = 2)] [Module.Oriented V (Fin 2)] (p : P) {p' : P} {s : AffineSubspace P} [s.direction.HasOrthogonalProjection] (hp : ps) (h : p' s) (hp' : p' ((orthogonalProjection s) p)) :
oangle p (↑((orthogonalProjection s) p)) p' = ↑(Real.pi / 2) oangle p (↑((orthogonalProjection s) p)) p' = ↑(-Real.pi / 2)
theorem EuclideanGeometry.oangle_orthogonalProjection_self {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank V = 2)] [Module.Oriented V (Fin 2)] (p : P) {p' : P} {s : AffineSubspace P} [s.direction.HasOrthogonalProjection] (hp : ps) (h : p' s) (hp' : p' ((orthogonalProjection s) p)) :
oangle p' (↑((orthogonalProjection s) p)) p = ↑(Real.pi / 2) oangle p' (↑((orthogonalProjection s) p)) p = ↑(-Real.pi / 2)