The Triangle Inequality for Angles #
This file contains the proof that angles obey the triangle inequality.
theorem
InnerProductGeometry.angle_le_angle_add_angle
{V : Type u_1}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
(x y z : V)
:
Triangle inequality for angles between vectors.
theorem
InnerProductGeometry.angle_eq_angle_add_add_angle_add_of_mem_span
{V : Type u_1}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
{x y z : V}
(hy : y ≠ 0)
(h_mem : y ∈ Submodule.span NNReal {x, z})
:
The triangle inequality is an equality if the middle vector is a nonnegative linear combination
of the other two vectors. See angle_add_angle_eq_pi_of_angle_eq_pi for the other equality case.
theorem
EuclideanGeometry.angle_le_angle_add_angle
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
(p p₁ p₂ p₃ : P)
:
Triangle inequality for angles in Euclidean geometry.