Documentation

Mathlib.Geometry.Euclidean.Inversion.Calculus

Derivative of the inversion #

In this file we prove a formula for the derivative of EuclideanGeometry.inversion c R.

Implementation notes #

Since fderiv and related definitions do not work for affine spaces, we deal with an inner product space in this file.

Keywords #

inversion, derivative

theorem ContDiffWithinAt.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {s : Set E} {a : E} {n : ℕ∞} (hc : ContDiffWithinAt (↑n) c s a) (hR : ContDiffWithinAt (↑n) R s a) (hx : ContDiffWithinAt (↑n) x s a) (hne : x a c a) :
ContDiffWithinAt (↑n) (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) s a
theorem ContDiffOn.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {s : Set E} {n : ℕ∞} (hc : ContDiffOn (↑n) c s) (hR : ContDiffOn (↑n) R s) (hx : ContDiffOn (↑n) x s) (hne : as, x a c a) :
ContDiffOn (↑n) (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) s
theorem ContDiffAt.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {a : E} {n : ℕ∞} (hc : ContDiffAt (↑n) c a) (hR : ContDiffAt (↑n) R a) (hx : ContDiffAt (↑n) x a) (hne : x a c a) :
ContDiffAt (↑n) (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) a
theorem ContDiff.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {n : ℕ∞} (hc : ContDiff (↑n) c) (hR : ContDiff (↑n) R) (hx : ContDiff (↑n) x) (hne : ∀ (a : E), x a c a) :
ContDiff n fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)
theorem DifferentiableWithinAt.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {s : Set E} {a : E} (hc : DifferentiableWithinAt c s a) (hR : DifferentiableWithinAt R s a) (hx : DifferentiableWithinAt x s a) (hne : x a c a) :
DifferentiableWithinAt (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) s a
theorem DifferentiableOn.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {s : Set E} (hc : DifferentiableOn c s) (hR : DifferentiableOn R s) (hx : DifferentiableOn x s) (hne : as, x a c a) :
DifferentiableOn (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) s
theorem DifferentiableAt.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} {a : E} (hc : DifferentiableAt c a) (hR : DifferentiableAt R a) (hx : DifferentiableAt x a) (hne : x a c a) :
DifferentiableAt (fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)) a
theorem Differentiable.inversion {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [InnerProductSpace F] {c x : EF} {R : E} (hc : Differentiable c) (hR : Differentiable R) (hx : Differentiable x) (hne : ∀ (a : E), x a c a) :
Differentiable fun (a : E) => EuclideanGeometry.inversion (c a) (R a) (x a)
theorem EuclideanGeometry.hasFDerivAt_inversion {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace F] {c x : F} {R : } (hx : x c) :
HasFDerivAt (EuclideanGeometry.inversion c R) ((R / dist x c) ^ 2 { toLinearEquiv := (reflection (Submodule.span {x - c})).toLinearEquiv, continuous_toFun := , continuous_invFun := }) x

Formula for the Fréchet derivative of EuclideanGeometry.inversion c R.