Documentation

Mathlib.Geometry.Euclidean.Inversion.ImageHyperplane

Image of a hyperplane under inversion #

In this file we prove that the inversion with center c and radius R ≠ 0 maps a sphere passing through the center to a hyperplane, and vice versa. More precisely, it maps a sphere with center y ≠ c and radius dist y c to the hyperplane AffineSubspace.perpBisector c (EuclideanGeometry.inversion c R y).

The exact statements are a little more complicated because EuclideanGeometry.inversion c R sends the center to itself, not to a point at infinity.

We also prove that the inversion sends an affine subspace passing through the center to itself.

Keywords #

inversion

theorem EuclideanGeometry.inversion_mem_perpBisector_inversion_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {c x y : P} {R : } (hR : R 0) (hx : x c) (hy : y c) :

The inversion with center c and radius R maps a sphere passing through the center to a hyperplane.

The inversion with center c and radius R maps a sphere passing through the center to a hyperplane.

theorem EuclideanGeometry.preimage_inversion_perpBisector {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {c y : P} {R : } (hR : R 0) (hy : y c) :
theorem EuclideanGeometry.image_inversion_perpBisector {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {c y : P} {R : } (hR : R 0) (hy : y c) :

Inversion sends an affine subspace passing through the center to itself.

theorem EuclideanGeometry.image_inversion_affineSubspace_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {c : P} {R : } {p : AffineSubspace P} (hR : R 0) (hp : c p) :
inversion c R '' p = p

Inversion sends an affine subspace passing through the center to itself.