Spaces orthogonal to the radius vector in spheres. #
This file defines the affine subspace orthogonal to the radius vector at a point.
Main definitions #
EuclideanGeometry.Sphere.orthRadius: the affine subspace orthogonal to the radius vector at a point (the tangent space, if that point lies in the sphere; more generally, the polar of the inversion of that point in the sphere).
def
EuclideanGeometry.Sphere.orthRadius
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
(s : Sphere P)
(p : P)
:
The affine subspace orthogonal to the radius vector of the sphere s at the point p (if
p lies in s, this is the tangent space; generally, this is the polar of the inversion of p
in s).
Equations
- s.orthRadius p = AffineSubspace.mk' p (Submodule.span ℝ {p -ᵥ s.center})ᗮ
Instances For
theorem
EuclideanGeometry.Sphere.self_mem_orthRadius
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
(s : Sphere P)
(p : P)
:
theorem
EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_left
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p x : P}
:
theorem
EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_right
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p x : P}
:
@[simp]
theorem
EuclideanGeometry.Sphere.direction_orthRadius
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
(s : Sphere P)
(p : P)
:
@[simp]
theorem
EuclideanGeometry.Sphere.orthRadius_center
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
(s : Sphere P)
:
@[simp]
theorem
EuclideanGeometry.Sphere.center_mem_orthRadius_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p : P}
:
theorem
EuclideanGeometry.Sphere.orthRadius_le_orthRadius_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p q : P}
:
@[simp]
theorem
EuclideanGeometry.Sphere.orthRadius_eq_orthRadius_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p q : P}
:
theorem
EuclideanGeometry.Sphere.finrank_orthRadius
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
[FiniteDimensional ℝ V]
{s : Sphere P}
{p : P}
(hp : p ≠ s.center)
:
theorem
EuclideanGeometry.Sphere.orthRadius_map
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
(p : P)
{f : P ≃ᵃⁱ[ℝ] P}
(h : f s.center = s.center)
:
theorem
EuclideanGeometry.Sphere.direction_orthRadius_le_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p q : P}
:
theorem
EuclideanGeometry.Sphere.orthRadius_parallel_orthRadius_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Sphere P}
{p q : P}
: