Documentation

Mathlib.Geometry.Manifold.ContMDiffMap

C^n bundled maps #

In this file we define the type ContMDiffMap of n times continuously differentiable bundled maps.

def ContMDiffMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 E' H') (M : Type u_6) [TopologicalSpace M] [ChartedSpace H M] (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] (n : WithTop ℕ∞) :
Type (max 0 u_6 u_7)

Bundled n times continuously differentiable maps, denoted as C^n(I, M; I', M') and C^n(I, M; k) (when the target is a normed space k with the trivial model) in the Manifold namespace.

Equations
Instances For

    Bundled n times continuously differentiable maps, denoted as C^n(I, M; I', M') and C^n(I, M; k) (when the target is a normed space k with the trivial model) in the Manifold namespace.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Bundled n times continuously differentiable maps, denoted as C^n(I, M; I', M') and C^n(I, M; k) (when the target is a normed space k with the trivial model) in the Manifold namespace.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance ContMDiffMap.instFunLike {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} :
        FunLike (ContMDiffMap I I' M M' n) M M'
        Equations
        theorem ContMDiffMap.contMDiff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} (f : ContMDiffMap I I' M M' n) :
        ContMDiff I I' n f
        @[simp]
        theorem ContMDiffMap.coeFn_mk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} (f : MM') (hf : ContMDiff I I' n f) :
        f, hf = f
        theorem ContMDiffMap.coe_injective {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} f g : ContMDiffMap I I' M M' n (h : f = g) :
        f = g
        theorem ContMDiffMap.ext {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} {f g : ContMDiffMap I I' M M' n} (h : ∀ (x : M), f x = g x) :
        f = g
        theorem ContMDiffMap.ext_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} {f g : ContMDiffMap I I' M M' n} :
        f = g ∀ (x : M), f x = g x
        instance ContMDiffMap.instContinuousMapClass {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} :
        ContinuousMapClass (ContMDiffMap I I' M M' n) M M'
        def ContMDiffMap.id {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ℕ∞} :
        ContMDiffMap I I M M n

        The identity as a C^n map.

        Equations
        Instances For
          def ContMDiffMap.comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {E'' : Type u_8} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_9} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type u_10} [TopologicalSpace M''] [ChartedSpace H'' M''] {n : WithTop ℕ∞} (f : ContMDiffMap I' I'' M' M'' n) (g : ContMDiffMap I I' M M' n) :
          ContMDiffMap I I'' M M'' n

          The composition of C^n maps, as a C^n map.

          Equations
          Instances For
            @[simp]
            theorem ContMDiffMap.comp_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {E'' : Type u_8} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_9} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type u_10} [TopologicalSpace M''] [ChartedSpace H'' M''] {n : WithTop ℕ∞} (f : ContMDiffMap I' I'' M' M'' n) (g : ContMDiffMap I I' M M' n) (x : M) :
            (f.comp g) x = f (g x)
            instance ContMDiffMap.instInhabited {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} [Inhabited M'] :
            Inhabited (ContMDiffMap I I' M M' n)
            Equations
            def ContMDiffMap.const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} (y : M') :
            ContMDiffMap I I' M M' n

            Constant map as a C^n map

            Equations
            Instances For
              def ContMDiffMap.fst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} :
              ContMDiffMap (I.prod I') I (M × M') M n

              The first projection of a product, as a C^n map.

              Equations
              Instances For
                def ContMDiffMap.snd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ℕ∞} :
                ContMDiffMap (I.prod I') I' (M × M') M' n

                The second projection of a product, as a C^n map.

                Equations
                Instances For
                  def ContMDiffMap.prodMk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {H' : Type u_5} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} (f : ContMDiffMap J I N M n) (g : ContMDiffMap J I' N M' n) :
                  ContMDiffMap J (I.prod I') N (M × M') n

                  Given two C^n maps f and g, this is the C^n map x ↦ (f x, g x).

                  Equations
                  Instances For
                    instance ContinuousLinearMap.hasCoeToContMDiffMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] (n : WithTop ℕ∞) :
                    Coe (E →L[𝕜] E') (ContMDiffMap (modelWithCornersSelf 𝕜 E) (modelWithCornersSelf 𝕜 E') E E' n)
                    Equations