Documentation

Mathlib.Geometry.Manifold.LocalSourceTargetProperty

Local properties of smooth functions which depend on both the source and target #

In this file, we consider local properties of functions between manifolds, which depend on both the source and the target: more precisely, properties P of functions f : M → N such that f has property P if and only if there is a suitable pair of charts on M and N, respectively, such that f read in these charts has a particular form. The motivating example of this general description are immersions and submersions: f : M → N is an immersion at x iff there are charts φ and ψ of M and N around x and f x, respectively, such that in these charts, f looks like u ↦ (u, 0). Similarly, f is a submersion at x iff it looks like a projection (u, v) ↦ u in suitable charts near x and f x.

Studying such local properties allows proving several lemmas about immersions and submersions only once. In IsImmersionEmbedding.lean, we prove that being an immersion at x is indeed a local property of this form.

Main definitions and results #

structure Manifold.IsLocalSourceTargetProperty {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {M : Type u_6} [TopologicalSpace M] {N : Type u_7} [TopologicalSpace N] (P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp) :

Structure recording good behaviour of a property of functions M → N w.r.t. to compatible choices of both a chart on M and N. Currently, we ask for the property being stable under restriction of the domain chart, and local in the target.

Motivating examples are immersions and submersions of smooth manifolds.

Instances For
    structure Manifold.LocalPresentationAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 F G) {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] (n : WithTop ℕ∞) (f : MN) (x : M) (P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp) :
    Type (max (max (max u_4 u_5) u_6) u_7)

    Data witnessing the fact that f has local property P at x

    Instances For
      def Manifold.LiftSourceTargetPropertyAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 F G) {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] (n : WithTop ℕ∞) (f : MN) (x : M) (P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp) :

      The induced property by a local property P: it is satisfied for f at x iff there exist charts φ and ψ of M and N around x and f x, respectively, such that f satisfies P w.r.t. φ and ψ.

      The motivating example are smooth immersions and submersions: the corresponding condition is that f look like the inclusion u ↦ (u, 0) (resp. a projection (u, v) ↦ u) in the charts φ and ψ.

      Equations
      Instances For
        noncomputable def Manifold.LiftSourceTargetPropertyAt.localPresentationAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
        LocalPresentationAt I I' n f x P

        A choice of charts witnessing the local property P of f at x.

        Equations
        Instances For
          noncomputable def Manifold.LiftSourceTargetPropertyAt.domChart {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :

          A choice of chart on the domain M of a local property of f at x: w.r.t. this chart and h.codChart, f has the local property P at x. The particular chart is arbitrary, but this choice matches the witness given by h.codChart.

          Equations
          Instances For
            noncomputable def Manifold.LiftSourceTargetPropertyAt.codChart {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :

            A choice of chart on the co-domain N of a local property of f at x: w.r.t. this chart and h.domChart, f has the local property P at x The particular chart is arbitrary, but this choice matches the witness given by h.domChart.

            Equations
            Instances For
              theorem Manifold.LiftSourceTargetPropertyAt.mem_domChart_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.mem_codChart_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.domChart_mem_maximalAtlas {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.codChart_mem_maximalAtlas {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.source_subset_preimage_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.property {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (h : LiftSourceTargetPropertyAt I I' n f x P) :
              theorem Manifold.LiftSourceTargetPropertyAt.congr_iff {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {M : Type u_6} [TopologicalSpace M] {N : Type u_7} [TopologicalSpace N] {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (hP : IsLocalSourceTargetProperty P) {f g : MN} {φ : OpenPartialHomeomorph M H} {ψ : OpenPartialHomeomorph N G} (hfg : Set.EqOn f g φ.source) :
              P f φ ψ P g φ ψ
              theorem Manifold.LiftSourceTargetPropertyAt.mk_of_continuousAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (hf : ContinuousAt f x) (hP : IsLocalSourceTargetProperty P) (domChart : OpenPartialHomeomorph M H) (codChart : OpenPartialHomeomorph N G) (hx : x domChart.source) (hfx : f x codChart.source) (hdomChart : domChart IsManifold.maximalAtlas I n M) (hcodChart : codChart IsManifold.maximalAtlas I' n N) (hfP : P f domChart codChart) :

              If P is a local property, by monotonicity w.r.t. restricting domChart, if f is continuous at x, to prove LiftSourceTargetPropertyAt I I' n f x P we need not check the condition f '' domChart.source ⊆ codChart.source.

              theorem Manifold.LiftSourceTargetPropertyAt.congr_of_eventuallyEq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f g : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (hP : IsLocalSourceTargetProperty P) (hf : LiftSourceTargetPropertyAt I I' n f x P) (h' : f =ᶠ[nhds x] g) :

              If P is monotone w.r.t. restricting domChart and closed under congruence, if f has property P at x and f and g are eventually equal near x, then g has property P at x.

              theorem Manifold.LiftSourceTargetPropertyAt.congr_iff_of_eventuallyEq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_4} [TopologicalSpace H] {G : Type u_5} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 F G} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_7} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ℕ∞} {f g : MN} {x : M} {P : (MN)OpenPartialHomeomorph M HOpenPartialHomeomorph N GProp} (hP : IsLocalSourceTargetProperty P) (h' : f =ᶠ[nhds x] g) :

              If P is monotone w.r.t. restricting domChart and closed under congruence, and f and g are eventually equal near x, then f has property P at x if and only if g has property P at x.