Equivalence of manifold differentiability with the basic definition for functions between #
vector spaces
The API in this file is mostly copied from Mathlib.Geometry.Manifold.ContMDiff.NormedSpace
,
providing the same statements for higher smoothness. In this file, we do the same for
differentiability.
theorem
DifferentiableWithinAt.comp_mdifferentiableWithinAt
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
{s : Set M}
{t : Set F}
{x : M}
(hg : DifferentiableWithinAt đ g t (f x))
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ F) f s x)
(h : Set.MapsTo f s t)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ F') (g â f) s x
theorem
DifferentiableAt.comp_mdifferentiableWithinAt
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
{s : Set M}
{x : M}
(hg : DifferentiableAt đ g (f x))
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ F) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ F') (g â f) s x
theorem
DifferentiableAt.comp_mdifferentiableAt
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
{x : M}
(hg : DifferentiableAt đ g (f x))
(hf : MDifferentiableAt I (modelWithCornersSelf đ F) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ F') (g â f) x
theorem
Differentiable.comp_mdifferentiableWithinAt
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
{s : Set M}
{x : M}
(hg : Differentiable đ g)
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ F) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ F') (g â f) s x
theorem
Differentiable.comp_mdifferentiableAt
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
{x : M}
(hg : Differentiable đ g)
(hf : MDifferentiableAt I (modelWithCornersSelf đ F) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ F') (g â f) x
theorem
Differentiable.comp_mdifferentiable
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_8}
[NormedAddCommGroup F]
[NormedSpace đ F]
{F' : Type u_11}
[NormedAddCommGroup F']
[NormedSpace đ F']
{g : F â F'}
{f : M â F}
(hg : Differentiable đ g)
(hf : MDifferentiable I (modelWithCornersSelf đ F) f)
:
MDifferentiable I (modelWithCornersSelf đ F') (g â f)
Linear maps between normed spaces are differentiable #
theorem
MDifferentiableWithinAt.clm_precomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
{x : M}
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.precomp Fâ (f y)) s x
theorem
MDifferentiableAt.clm_precomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{x : M}
(hf : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.precomp Fâ (f y)) x
theorem
MDifferentiableOn.clm_precomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
(hf : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s)
:
MDifferentiableOn I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.precomp Fâ (f y)) s
theorem
MDifferentiable.clm_precomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
(hf : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f)
:
MDifferentiable I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ)) fun (y : M) =>
ContinuousLinearMap.precomp Fâ (f y)
theorem
MDifferentiableWithinAt.clm_postcomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
{x : M}
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.postcomp Fâ (f y)) s x
theorem
MDifferentiableAt.clm_postcomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{x : M}
(hf : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.postcomp Fâ (f y)) x
theorem
MDifferentiableOn.clm_postcomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
(hf : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s)
:
MDifferentiableOn I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => ContinuousLinearMap.postcomp Fâ (f y)) s
theorem
MDifferentiable.clm_postcomp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
(hf : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f)
:
MDifferentiable I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ)) fun (y : M) =>
ContinuousLinearMap.postcomp Fâ (f y)
theorem
MDifferentiableWithinAt.clm_comp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
{x : M}
(hg : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s x)
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => (g x).comp (f x)) s x
theorem
MDifferentiableAt.clm_comp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{x : M}
(hg : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g x)
(hf : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => (g x).comp (f x)) x
theorem
MDifferentiableOn.clm_comp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
(hg : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s)
(hf : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s)
:
MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => (g x).comp (f x)) s
theorem
MDifferentiable.clm_comp
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
(hg : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g)
(hf : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f)
:
MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) fun (x : M) => (g x).comp (f x)
theorem
MDifferentiableWithinAt.clm_apply
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ}
{s : Set M}
{x : M}
(hg : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s x)
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ Fâ) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ Fâ) (fun (x : M) => (g x) (f x)) s x
Applying a linear map to a vector is differentiable within a set. Version in vector spaces. For
a version in nontrivial vector bundles, see MDifferentiableWithinAt.clm_apply_of_inCoordinates
.
theorem
MDifferentiableAt.clm_apply
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ}
{x : M}
(hg : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g x)
(hf : MDifferentiableAt I (modelWithCornersSelf đ Fâ) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ Fâ) (fun (x : M) => (g x) (f x)) x
Applying a linear map to a vector is differentiable. Version in vector spaces. For a
version in nontrivial vector bundles, see MDifferentiableAt.clm_apply_of_inCoordinates
.
theorem
MDifferentiableOn.clm_apply
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ}
{s : Set M}
(hg : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s)
(hf : MDifferentiableOn I (modelWithCornersSelf đ Fâ) f s)
:
MDifferentiableOn I (modelWithCornersSelf đ Fâ) (fun (x : M) => (g x) (f x)) s
theorem
MDifferentiable.clm_apply
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ}
(hg : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g)
(hf : MDifferentiable I (modelWithCornersSelf đ Fâ) f)
:
MDifferentiable I (modelWithCornersSelf đ Fâ) fun (x : M) => (g x) (f x)
theorem
MDifferentiableWithinAt.cle_arrowCongr
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{g : M â Fâ âL[đ] Fâ}
{s : Set M}
{x : M}
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(f x).symm) s x)
(hg : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(g x)) s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => â((f y).arrowCongr (g y))) s x
theorem
MDifferentiableAt.cle_arrowCongr
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{g : M â Fâ âL[đ] Fâ}
{x : M}
(hf : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(f x).symm) x)
(hg : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(g x)) x)
:
MDifferentiableAt I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => â((f y).arrowCongr (g y))) x
theorem
MDifferentiableOn.cle_arrowCongr
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{g : M â Fâ âL[đ] Fâ}
{s : Set M}
(hf : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(f x).symm) s)
(hg : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) (fun (x : M) => â(g x)) s)
:
MDifferentiableOn I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ))
(fun (y : M) => â((f y).arrowCongr (g y))) s
theorem
MDifferentiable.cle_arrowCongr
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{f : M â Fâ âL[đ] Fâ}
{g : M â Fâ âL[đ] Fâ}
(hf : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) fun (x : M) => â(f x).symm)
(hg : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) fun (x : M) => â(g x))
:
MDifferentiable I (modelWithCornersSelf đ ((Fâ âL[đ] Fâ) âL[đ] Fâ âL[đ] Fâ)) fun (y : M) => â((f y).arrowCongr (g y))
theorem
MDifferentiableWithinAt.clm_prodMap
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
{x : M}
(hg : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s x)
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ (Fâ Ă Fâ âL[đ] Fâ Ă Fâ)) (fun (x : M) => (g x).prodMap (f x)) s x
theorem
MDifferentiableAt.clm_prodMap
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{x : M}
(hg : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g x)
(hf : MDifferentiableAt I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f x)
:
MDifferentiableAt I (modelWithCornersSelf đ (Fâ Ă Fâ âL[đ] Fâ Ă Fâ)) (fun (x : M) => (g x).prodMap (f x)) x
theorem
MDifferentiableOn.clm_prodMap
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
{s : Set M}
(hg : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g s)
(hf : MDifferentiableOn I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f s)
:
MDifferentiableOn I (modelWithCornersSelf đ (Fâ Ă Fâ âL[đ] Fâ Ă Fâ)) (fun (x : M) => (g x).prodMap (f x)) s
theorem
MDifferentiable.clm_prodMap
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{Fâ : Type u_14}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_15}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_16}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{Fâ : Type u_17}
[NormedAddCommGroup Fâ]
[NormedSpace đ Fâ]
{g : M â Fâ âL[đ] Fâ}
{f : M â Fâ âL[đ] Fâ}
(hg : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) g)
(hf : MDifferentiable I (modelWithCornersSelf đ (Fâ âL[đ] Fâ)) f)
:
MDifferentiable I (modelWithCornersSelf đ (Fâ Ă Fâ âL[đ] Fâ Ă Fâ)) fun (x : M) => (g x).prodMap (f x)
Differentiability of scalar multiplication #
theorem
MDifferentiableWithinAt.smul
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{x : M}
{V : Type u_18}
[NormedAddCommGroup V]
[NormedSpace đ V]
{f : M â đ}
{g : M â V}
(hf : MDifferentiableWithinAt I (modelWithCornersSelf đ đ) f s x)
(hg : MDifferentiableWithinAt I (modelWithCornersSelf đ V) g s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf đ V) (fun (p : M) => f p ⢠g p) s x
theorem
MDifferentiableAt.smul
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
{V : Type u_18}
[NormedAddCommGroup V]
[NormedSpace đ V]
{f : M â đ}
{g : M â V}
(hf : MDifferentiableAt I (modelWithCornersSelf đ đ) f x)
(hg : MDifferentiableAt I (modelWithCornersSelf đ V) g x)
:
MDifferentiableAt I (modelWithCornersSelf đ V) (fun (p : M) => f p ⢠g p) x
theorem
MDifferentiableOn.smul
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{V : Type u_18}
[NormedAddCommGroup V]
[NormedSpace đ V]
{f : M â đ}
{g : M â V}
(hf : MDifferentiableOn I (modelWithCornersSelf đ đ) f s)
(hg : MDifferentiableOn I (modelWithCornersSelf đ V) g s)
:
MDifferentiableOn I (modelWithCornersSelf đ V) (fun (p : M) => f p ⢠g p) s
theorem
MDifferentiable.smul
{đ : Type u_1}
[NontriviallyNormedField đ]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace đ E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners đ E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{V : Type u_18}
[NormedAddCommGroup V]
[NormedSpace đ V]
{f : M â đ}
{g : M â V}
(hf : MDifferentiable I (modelWithCornersSelf đ đ) f)
(hg : MDifferentiable I (modelWithCornersSelf đ V) g)
:
MDifferentiable I (modelWithCornersSelf đ V) fun (p : M) => f p ⢠g p